

Transmittal

Boghosian at 310-332-7612.

Date:	May 6, 2020
То:	Michael Schulman Remedial Project Manager, Superfund Division U.S Environmental Protection Agency Region 9 75 Hawthorne Street, SFD-7-1 San Francisco, CA 94105
From:	Shantal Der Boghosian, Environmental Remediation Project Manager Northrop Grumman Systems Corporation One Space Park Mail Stop: NGC CER-XE6D21 Redondo Beach, CA 90278
Subject/Title:	Annual Groundwater Monitoring and Five-Year Status and Effectiveness Evaluation Report Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, CA
CC:	Rebecca Mora, AECOM Holly Holbrook, AECOM Jennifer Clay, GES
Northrop Gru	mman System Corporation is submitting the above-referenced
X For you For you	r review and comment r information and file r approval r signature
Total number	of copies sent: 1
Remarks:	
If you have ar	ny questions or comments regarding the enclosed report, please feel free to call Shantal Der

AECOM

ANNUAL GROUNDWATER
MONITORING AND FIVE-YEAR
STATUS AND EFFECTIVENESS
EVALUATION REPORT

JANUARY 2014 TO DECEMBER 2018

FORMER TRW MICROWAVE SITE 825 STEWART DRIVE SUNNYVALE, CALIFORNIA

May 2020

ANNUAL GROUNDWATER MONITORING AND FIVE-YEAR STATUS AND EFFECTIVENESS EVALUATION REPORT

FORMER TRW MICROWAVE SITE 825 STEWART DRIVE SUNNYVALE, CALIFORNIA

May 6, 2020

Prepared by:

AECOM 999 W. Town and Country Road Orange, CA 92868-4713

> Helly Holbrook Project Engineer

446

Ben Loebner, PG. 6623 Project Geologist

Ben Loebner

LOWAL OF

Benny J.

Loebner

No. 6623

TABLE OF CONTENTS

1.0	INTF	RODUCTION	ON	1
2.0	BAC	KGROUN	ID	1
	2.1 2.2 2.3 2.4 2.5 2.6	Operation Geology 2.3.1 2.3.2 2.3.3 Groundy Regulato	ration onal History onal Hydrogeology Regional Geology and Hydrogeology Site Geology and Hydrogeology Groundwater Movement water Monitoring Well Network ory and Remediation History	123344
3.0	SUM	MARY O	F REMEDIATION ACTIVITIES SINCE JANUARY 2014	9
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Addition Installati Source Addition Vapor In Backgro Well Inst Continue 3.9.1 3.9.2 3.9.2.1 3.9.2.2 3.9.2.3	ed Suspension of Groundwater Extraction and Treatment System	
4.0	REM		N EFFECTIVENESS EVALUATION	
	4.1 4.2		eness of Groundwater Extraction and Treatment Systemed Anaerobic Bioremediation Program	
5.0	CON	ICLUSION	NS AND RECOMMENDATIONS	22
6.0	REE	ERENCE	9	22

TABLES

- 1 Well Completion and Sampling Information
- 2 Water-Level Elevation Measurements October 2018
- 3 2018 Groundwater Volatile Organic Compound Results
- 4 2018 Groundwater General Environmental Parameter Results

FIGURES

- 1 Site Location
- 2 Site Layout and Well Locations
- 3 Previous Remedial Activities
- 4 Potentiometric Surface Contours, Zone A October 2018
- 5 Potentiometric Surface Contours, Zone B1, HSUs 1 and 2 October 2018
- 6 Potentiometric Surface Contours, Zone B1, HSU 3 October 2018
- 7 Potentiometric Surface Contours, Zone B2 October 2018
- 8 VOC Results Zone A
- 9 VOC Results Zone B1
- 10 VOC Results Zone B2
- TCE Concentrations vs. Time Wells T-2A, T-7A, T-8A, T-9A, T-13A, T-15A, and T-16A
- 12 cDCE Concentrations vs. Time Wells T-2A, T-7A, T-8A, T-9A, T-13A, T-15A, and T-16A
- 13 TCE Concentrations vs. Time Wells T-2B, T-4B, T-7B, T-8B, T-9B, T-10B, and T-17B
- 14 TCE Concentrations vs. Time Wells T-2C, T-10C, T-11C, and T-12C
- 15 Chlorinated Ethene Concentrations, Zone A October 2018

APPENDICES

Appendix A	Standard Groundwater Sampling Procedures and Low-Flow Sampling Logs
Appendix B	Historical Water-Level Elevation Measurements
Appendix C	Historical Groundwater Analytical Results
Appendix D	Chlorinated Ethene Concentration Trend Plots for Selected Wells
Appendix E	Analytical Laboratory Reports and Chain-of-Custody Forms – 2018
Appendix D	Chlorinated Ethene Concentration Trend Plots for Selected Wells

1.0 INTRODUCTION

This Annual Groundwater Monitoring and Five-Year Status and Effectiveness Evaluation Report (report) presents the results of the groundwater monitoring program in 2018 and summarizes the remedial activities performed at the site over the past five-year period (January 2014 through December 2018) by Northrop Grumman Systems Corporation (Northrop Grumman) in 2018 at the former TRW Microwave Site (site) in Sunnyvale, California (Figure 1). The United States Environmental Protection Agency (USEPA) is the lead regulatory agency for the site, after regulatory oversight transferred from the California Regional Water Quality Control Board - San Francisco Bay Region (RWQCB) on August 7, 2014 (USEPA, 2014).

The groundwater monitoring program includes annual monitoring activities previously established by RWQCB (RWQCB, 1999) including Non-Pumping Conditions (NPC) evaluation (RWQCB, 2001a).

2.0 BACKGROUND

This section provides background information for the site including its location and description, historical use, and listing of important previous investigations conducted as a part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process.

2.1 Site Location

The former TRW Microwave site is located at 825 Stewart Drive in Sunnyvale, California, about 50 miles southeast of San Francisco, California. A site location map showing the well locations is presented on Figure 2.

The TRW Microwave Operable Unit (OU) is surrounded by the following sites that are impacted by volatile organic compounds (VOCs): Advanced Micro Devices (AMD) Buildings 901/902 Thompson Place and 915 DeGuine Drive; Philips Semiconductors (Philips; formerly Signetics Inc.) Buildings 811 Arques, 815 Stewart Drive, and 440 Wolfe Road; and Mohawk Laboratories. Three of these facilities (AMD 901/902, Philips 811, and Mohawk Laboratories) are located hydraulically upgradient (south) of the TRW Microwave OU; two facilities (Philips 815 and 440) are located approximately cross-gradient (west) of the site, and one facility (AMD Building 915) is located downgradient (north) of the site. These surrounding sites have historically used trichloroethene (TCE) and other chlorinated VOCs in their manufacturing processes and VOCs entered groundwater. AMD, Northrop Grumman, and Philips (the Three Companies) share responsibility for the management and remediation of the commingled groundwater plume, defined as the Three Companies Offsite Operable Unit (OOU).

2.2 Operational History

Prior to 1968, the site was not used for industrial activities. From 1968 to 1974, Aertech Industries (Aertech) assembled and tested microwave and semiconductor components at the site. In 1974, TRW Inc. (TRW) acquired the site from Aertech and in 1987 FEI Microwave purchased it from TRW. FEI Microwave subsequently became Tech Facility 1, Inc. During these changes in site ownership, operations were continuous, with no significant process changes from 1968 to 1993.

In 1993, FEI Microwave stopped production, and in 1995 the site was acquired by Stewart Associates. The site was subsequently leased to Diablo Research Corporation, a contract research and development company. Diablo Research Corporation occupied the site until August 2000, when Cadence Inc. leased the site and continued research and development operations. The building was unoccupied after January 2001 (CDM 2009a). Between 2001 and 2003, the site building exterior was remodeled. As part of this remodeling, a portion of the site building was demolished and a new structure, contiguous with the existing structure was constructed.

In December 2002, TRW merged with Northrop Grumman. In 2004, the property was purchased by Pacific Landmark. The building was renovated in 2014 and is currently leased as a commercial property. During these changes in site ownership, TRW, and then Northrop Grumman, retained responsibility for site cleanup. During operations at the site between 1968 and 1993, TCE and other industrial solvents were used, and hazardous wastes were generated as a byproduct of the operations. Waste solvent composed mainly of TCE was stored in an underground storage tank (UST) from 1970 through 1982. The tank was removed in early 1983. Figure 2 presents the location of the former UST as well as remedial activities conducted to date. An in-ground three-stage ammonia gas acid neutralization system (ANS) operated from 1968 to 1984 after which it was disconnected, removed, and replaced by an aboveground system with secondary containment. The aboveground ANS was disconnected and removed in 2001, during remodeling of the site building (CDM, 2009a).

2.3 Geology and Hydrogeology

2.3.1 Regional Geology and Hydrogeology

The site is located in the Santa Clara Valley, a structural basin bounded by the Santa Cruz Mountains to the south and west and San Francisco Bay to the north. The basin is filled with Quaternary-age alluvial sediments that were derived from the Santa Cruz Mountains and deposited along northward-trending ancestral streams enroute to the San Francisco Bay. The depositional environment was characterized by meandering and braided stream systems that created sequences of coarse-grained sand and gravel units interbedded with fine-grained clay and silt deposited during fluctuations in the ancestral San Francisco Bay (CDM 2000a).

Regionally, the alluvial sediments in the site area have been divided into two broad hydrogeologic intervals or zones, referred to as the upper aquifer zone and the lower aquifer zone. These two zones are separated by an extensive clay and silt aquitard that generally occurs at depths beginning at about 100 feet below ground surface (bgs). Numerous coarse-grained sand and gravel units have been identified in the upper and lower aquifer zones, and these water-yielding zones have been shown to roughly correlate throughout the area.

The upper aquifer zone consists of two water-yielding zones, designated as Zones A and B while the lower aquifer zone is designated Zone C. Zone A occurs within the interval from the water table to a depth of about 25 feet bgs. Zone B consists of five sub-zones (Zones B1 through B5) encountered at approximately 30 feet bgs to 100 feet bgs. Drinking water aquifers occur below 150 feet bgs in the lower aquifer zone or Zone C. Studies at the site have not been conducted below Zone B (CDM 2000a).

2.3.2 Site Geology and Hydrogeology

The site stratigraphy consists predominantly of clay and silty clay inter-bedded with coarser lenses of sands and gravels. Six water-yielding zones, Zone A and Zones B1 through B5, have been identified beneath the site or in the surrounding area. These zones consist of permeable sediments, ranging from silty sand to sand and gravel, and are vertically separated by laterally continuous lower permeability clay and silt intervals. Onsite VOC impact has been shown to be present in Zones A, B1, and B2. Zones B3 and B4 have not been shown to contain VOCs beneath the site, indicating that the aquitard separating Zones B2 and B3 is continuous and sufficiently impermeable to prevent the vertical migration of VOCs.

This historic representation of depth-dependent zones presumes that the hydrostratigraphy is sheet-like. However, the current conceptual site model (CSM) developed using environmental sequenced stratigraphy (ESS) is based on the fluvial depositional environment of the sediments encountered. Each water-yielding zone consists of multiple hydrostratigraphic units (HSUs) defined by channel sands which may not be hydraulically connected. These HSUs have implications when interpreting groundwater elevation data and contaminant chemistry data based on the zonation terminology.

The ESS evaluation mapped out HSUs defined by subsurface stream channel deposits underlying the site that serve as primary groundwater flow and contaminant migration pathways. A detailed summary of the ESS methodology and conclusions of the geologic evaluation are included in the Addendum to the Technical Memorandum in Response to the 2014 Five-Year Review Report (AECOM, 2016a). These pathways are shown on Figure 4 (Zone A), Figures 5 and 6 (Zone B1), and Figure 7 (Zone B2). Two HSUs were mapped in Zone B1 during the initial ESS evaluation, one of which traces back to the onsite source area (referred to as HSU1), and another deeper unit which is oriented obliquely to the presumed groundwater gradient (referred to as HSU2) and is interpreted as a contaminant pathway from offsite sources. The results of a combination membrane interface probe (MIP) and hydraulic profiling tool (HPT), referred to as MiHPT, survey performed in July 2016 confirmed and further refined the results of the previous ESS evaluation and resulting CSM. The survey identified a third separate HSU in Zone B1, located at a shallower depth than previously mapped HSU1 and HSU2, referred to as HSU3. This HSU was then mapped across the site (Figure 6). Based on Hydropunch™ sampling results, significantly more mass of both TCE and cis-1,2-dichloroethene (cDCE) than were previously identified, based on monitoring results from well T-7B (screened in HSU2), are migrating onto the site at the southern site boundary. A more detailed evaluation of Zone A and the HSUs in Zone B1 was conducted in 2019 using all of the data collected during previous investigations as well as recently installed wells in the vicinity of well T-9B, further refining the HSUs (AECOM, in prep).

2.3.3 Groundwater Movement

Regional groundwater movement for the three monitored zones beneath the site (A, B1, and B2) has historically been to the north or the north-northeast. However, groundwater extraction at off-site locations adjacent to the site has substantially influenced the groundwater movement, particularly in Zones B1 and B2 (CDM 2009a). Potentiometric surface contours generated for Zones A, B1, and B2 using the October 2018 water-level elevation data are presented on Figures 4, 5, 6 and 7, respectively.

The ranges of hydraulic conductivities reported in previous reports (WA 1996b and CDM 2000c) for Zones A and B1/B2 are 356 to 400 feet per day and 25 to 150 feet per day, respectively. The ranges of groundwater flow velocities reported in previous reports (WA 1996b and CDM 2000a) for Zones A and B1/B2 are 15 to 22.5 feet per day and 1.25 to 7.5 feet per day, respectively.

2.4 Groundwater Monitoring Well Network

Forty-nine (49) wells and the Eductor (a groundwater extraction pipe installed within the former underground storage tank [UST] gravel backfill pit) have been completed at the site in five depth intervals, designated as Zones A, B1, B2, B3, and B4 (Table 1). These zones consist of permeable sediments, ranging from silty sand to sand and gravel, and are vertically separated by laterally continuous lower permeability clay and silt intervals.

In 2004, wells T-1A and T-1B were abandoned with permission from RWQCB (CDM, 2004 and RWQCB, 2004a). As discussed in the 2014 annual report (AECOM, 2015a), four wells (T-2A, T-2B, T-2C, and T-3A) and the Eductor, all located inside the building, were destroyed in October and November 2014. Figure 2 shows the site layout and existing well locations (as of October 2017).

2.5 Regulatory and Remediation History

A chronology of major events associated with site subsurface investigations and actions since March 2004 is presented below:

Date	Event
March 2004	Northrop Grumman submitted a work plan to install and operate a temporary mechanical ventilation system prior to collecting additional indoor air samples within the site building (CDM 2004d).
April 2004	Subsequent to Water Board approval (Water Board 2004c), CDM installed and operated a temporary mechanical ventilation system within the site building and collected indoor air samples in order to determine the effectiveness of ventilation on reducing concentrations of VOCs to acceptable levels.
May 2004	Northrop Grumman submitted the Report of Findings – Installation and Operation of a Temporary Mechanical Ventilation System and Indoor Air Sampling report to the Water Board. In this report, CDM concluded that the rate of vapor intrusion into the site building appeared to be low enough to be mitigated solely with operation of a standard ventilation system (CDM 2004c).
June 2004	Northrop Grumman submitted evidence to the Water Board regarding re-designation of site well 36D as a Zone A well rather than a Zone B1 well (CDM 2004e).

Date	Event
July 2004	Water Board requested that "if the site building is not occupied by October 2004, another round of indoor air samples be collected without mechanical ventilation to determine if improvements in groundwater quality reduced vapor intrusion to a level that does not require further monitoring" (Water Board 2004d).
August 2004	Water Board approved the re-designation of site well 36D as a Zone A well rather than a Zone B1 well (Water Board 2004e).
September 2004	In response to the Water Board request, Northrop Grumman submitted a work plan to conduct an additional round of indoor air sampling without mechanical ventilation (CDM 2004f). As part of its Multi-site Cooperative Agreement (MSCA) with USEPA, the Water Board submitted Five-Year CERCLA Review report to USEPA and recommended that Northrop evaluate the feasibility of expanding enhanced anaerobic bioremediation (EAB) into the area where VOC concentrations still exceeded SCRs, and consider implementing in situ bioremediation as the final remedy for the site. The Water Board noted that the ROD (USEPA 1991) would need to be amended, if there is a permanent change in remedy from GWET to in situ bioremediation (Water Board 2004b). The USEPA approved the report the same month (USEPA 2004).
October 2004	Subsequent to Water Board approval of the work plan (Water Board 2004f), Northrop Grumman conducted another round of indoor air sampling without a mechanical ventilation system in operation.
November 2004	Northrop Grumman submitted the <i>Report of Findings – October 2004 Indoor Air Sampling</i> report to the Water Board. In this report, CDM concluded that mitigation of indoor VOC concentrations to below threshold levels could be achieved with operation of a standard ventilation system (CDM 2004g).
December 2004	Water Board approved the October 2004 Indoor Air Sampling Report (Water Board 2004g). The Water Board recommended that adequate ventilation be maintained in the site building in order to minimize risk to the health of building occupants and requested an additional round of indoor air samples be collected from the building before it is reoccupied. The Water Board also requested that Northrop Grumman prepare a Risk Management Plan (RMP) that would guide the future management of human health risks associated with occupancy of the site, with particular emphasis on the vapor intrusion issue (Water Board 2004g).
February 2005	The effectiveness monitoring showed that the EAB application increased the rate of chlorinated VOC biodegradation occurring within the former site source area and also accelerated VOC attenuation rates across the downgradient portions of the site.

Date	Event			
April 2005	Northrop Grumman submitted a preliminary draft RMP to the Water Board (CDM 2005a) that is to be finalized after installation of a permanent ventilation system and the intended use of building is identified by property owner.			
August 2005 Pursuant to the Water Board's recommendations in the 200 MSCA review, and subsequent to Water Board approval, th EAB pilot program was expanded to include groundwater immediately downgradient of the former site source area (at wells T-8A, T-8B, and T-10B) (CDM 2005b and Water Board 2005).				
September 2005	As part of the EAB expansion, four additional Zone A wells, T-13A, T-14A, T-15A, and T-16A, and one additional Zone B1 well T-17B, were installed at the site (Northrop Grumman 2006).			
April 2006	Pursuant to the Water Board's recommendations in the 2004 MSCA review, Northrop Grumman submitted the Revised Proposed Plan (CDM 2006) to the USEPA to change the groundwater remedy from GWET to in situ bioremediation.			
July 2006	Water Board issued a letter to USEPA in which they concurred with conclusions of the Revised Proposed Plan and recommended to USEPA to change the groundwater remedy for the site from GWET to in situ bioremediation (Water Board 2006).			
January 2007	EAB performance monitoring showed that EAB continued to improve the groundwater quality and enhance VOC degradation in and around the former site source area; however, VOC degradation had slowed at downgradient portions of the plume due to competing electron acceptors (Northrop Grumman 2007).			
June 2007	Northrop Grumman submitted a work plan for additional Zone A EAB remediation activities, which proposed to conduct four quarterly cheese whey injections in the expanded portion of Zone A aquifer downgradient of the former site source area (CDM 2007).			
August 2007	Subsequent to Water Board approval (Water Board 2007), CDM installed seven injection wells (T-18A to T-24A) and one monitoring well (T-25A) as part of the downgradient Zone A EAB treatment area.			
September 2007	Tamalpais Environmental Consultants (TEC), under CDM's oversight, performed the first of four quarterly cheese whey injection events into wells T-13A, T-14A, and T-18A through T-24A (Northrop Grumman 2008).			
November 2007	CDM performed a one-time bioaugmentation event into wells T-13A, T-14A, and T-18A through T-24A, using groundwater from the Eductor (Northrop Grumman 2008).			
December 2007	TEC, under CDM's oversight, performed the second of four quarterly cheese whey injection events into wells T-13A, T-14A, and T-18A through T-24A (Northrop Grumman 2008).			

Date	Event		
March 2008	TEC, under CDM's oversight, performed the third of four quarterly cheese whey injection events into wells T-13A, T-14A, and T-18A through T-24A.		
June 2008	TEC, under CDM's oversight, performed the final of four quarterly cheese whey injection events into wells T-13A, T-14A, and T-18A through T-24A.		
May 2009	Northrop Grumman submitted the third and most recent Five- Year Status and Effectiveness Evaluation Report (Five-Year Report) to the Water Board for the review period from May 2004 through December 2008 (CDM 2009a).		
September 2009	The Water Board submitted the third Five-Year CERCLA Review report to the USEPA (Water Board 2009).		
September 2009	Northrop Grumman submitted updated revised proposed plan for the USEPA (CDM 2009b). This proposed plan updated the original revised proposed plan submitted in April 2006 (CDM 2006). The objective of this updated revised proposed plan was to change the groundwater remedy at the site to in situ bioremediation with monitored enhanced natural attenuation (MENA).		
January 2010	EAB performance monitoring showed significant depletion of electron donor (cheese whey) and initial rebound of competing electron acceptors in the expanded EAB treatment area (AECOM 2010a).		
October 2010	AECOM submitted a work plan for additional Zone A EAB remedial activities, which proposed to conduct one emulsified vegetable oil injection and one neat vegetable oil injection in the former site source area excavation (AECOM 2010b).		
October 2010	The Water Board approved the work plan (AECOM 2010b) to conduct additional EAB activities at the site (Water Board 2010).		
October 2010	AECOM injected emulsified vegetable oil into the Eductor, located in Zone A within the former site source area excavation.		
November 2010 Vironex, under AECOM oversight, injected neat vegetable the Eductor, located in Zone A within the former site source excavation (AECOM 2010c).			
November 2011	EHC-L is injected into former cheese-whey injection wells and ABC+ is injected using direct push technology in the downgradient EAB treatment area.		
December 2012	6 December 2012 Requirement for Vapor Intrusion Sampling and Analysis Work Plan and Report letter from the Water Board (Water Board, 2012).		
June 2013	AECOM submits the Work Plan for Membrane Interface Probe and Remediation Activities at the Former Source Area Excavation (AECOM, 2013a) to the Water Board.		
July 2013	Vironex, under AECOM oversight, performs MIP investigation survey.		

Date	Event			
August 2013	AECOM submits the <i>Membrane Interface Probe (MIP) Activities</i> Report (AECOM, 2013b) to the Water Board.			
October 2013	The Water Board approved the Vapor Intrusion Evaluation Sampling and Analysis Work Plan (AECOM 2013c) to install subslab vapor wells and perform indoor air sampling at the site.			
December 2013	Sub-slab vapor wells were installed and sampled and indoor air samples were collected.			
March 2014	1,180 gallons of VOC-impacted groundwater were removed from the Eductor using a vacuum truck.			
July 2014	An expanded MIP investigation was performed in the vicinity of the Eductor. Results were included in the <i>Well Destruction and Source Removal Work Plan</i> (AECOM, 2014a)			
August and September 2014	A passive sub-slab vapor collection (SVC) system was installed beneath the concrete floor in accordance with the Work Plan for Passive Sub-Slab Vapor Collection System Installation (AECOM, 2014b)			
October and November 2014	A targeted excavation of the source area was performed using large-diameter augers to remove approximately 590 tons of soil and 9,000 gallons of water, summarized in the <i>Source Area Removal Summary Report</i> (Orion Environmental, Inc., 2015)			
October 2014	Wells located within the building (T-2A, T-2B, T-3A) and the Eductor were destroyed to prevent them from serving as potential vapor intrusion pathways.			
December 2014	Vironex, under AECOM oversight, injected emulsified vegetable oil (EVO) under building footings in the vicinity of the former source area.			
March 2015	AECOM reviewed geological information at the site using environmental sequence stratigraphy (ESS)			
May 2015	AECOM performed a vapor intrusion evaluation of the site to confirm the efficacy of the passive SVC (AECOM 2015a)			
December 2015 AECOM performed additional vapor intrusion sampling follow tenant improvements to verify the efficacy of the passive SV had not been impacted (AECOM 2016a).				
July 2016	A combination MIP and hydraulic profiling tool (HPT) investigation was performed at the site to support and refine the ESS evaluation			
August 2017	Five monitoring wells were installed to monitored hydrostratigraphic units (HSUs) identified during the MIP-HPT investigation.			
December 2018	An additional nested monitoring well was installed in the vicinity of existing well T-9B.			

2.6 Potential Receptors

As required by the Water Board Order, in 1992, TRW and then current property owner, Tech Facility 1, Inc., prepared and recorded a deed restriction for the property to (Tech Facility 1, 1992):

- Prohibit the use of shallow groundwater for drinking water without approval from Water Board and other agencies with jurisdiction, and
- Notify Water Board before well installation.

This deed restriction continues to be in effect and protects potential human receptors from contacting impacted groundwater at the site. Per the recommendations in the previous Five-Year Review, the current legal owners of the former TRW Microwave property should record a new restrictive covenant that is consistent with current California law (California Civil Code section 1471, which establishes the framework for environmental covenants in California).

A database search was performed at the SCVWD in January 2000 to locate potential receptors or conduits (i.e., groundwater production wells) within 0.5 mile of the site. Based on the information provided to CDM by the SCVWD and review of previous reports, the nearest public water well (SCVWD #274) is located more than 2,000 feet north and downgradient of the site. The well is screened in the lower aquifer, Zone C, approximately 250 feet below ground surface. As no contamination is identified in Zone B4 and the upper and lower aquifers (i.e., from Zone B to Zone C) are separated by an appreciable aguitard, it is unlikely that contamination from the shallow aquifer at the site has or will impact the public water well (HLA, 1991b). In addition, an internet search performed the Water Board's Geotracker on (http://geotracker.waterboards.ca.gov) in January 2020 did not show any supply wells downgradient of the site.

To protect potential downgradient receptors, the Three Companies (Northrop Grumman, AMD, and Philips) contribute to the hydraulic containment of impacted groundwater within the defined OOU, downgradient of the Former TRW Microwave, AMD, and Philips sites. The OOU extracts groundwater from a set of wells downgradient of the three companies' sites that prevent the migration of VOC-impacted groundwater beyond (north of) Highway 101.

As noted above, a passive sub-slab vapor collection system was installed in 2014, prior to occupation of the building. Subsequent sampling of the system, both before and after tenant renovations were performed in the building, confirmed the efficacy of the passive SVC system (AECOM, 2016a).

3.0 SUMMARY OF REMEDIATION ACTIVITIES SINCE JANUARY 2014

Prior to January 2009, TRW, and then Northrop Grumman, conducted numerous subsurface investigations to analyze the origin and distribution of VOC impacts at the site, and implemented several actions to remove VOCs and monitor their removal. These activities were presented in detail in the first, second, third, and fourth Five-Year Reports (WA, 1996a; CDM, 2001a, 2009a; AECOM, 2014a) and in the 2004 MSCA review (Water Board, 2004b).

Since January 2014, remediation activities conducted at the site have included: continued suspension of the GWET system, continuation of the groundwater monitoring program (including installation of seven new monitoring wells), continued operation and monitoring of the EAB program, a membrane interface probe (MIP) investigation in the former site source area, installation of a passive sub-slab vapor collection system (SVC) and indoor air and sub-slab vapor sampling. During calendar year 2018, AECOM, on behalf of Northrop Grumman, conducted the annual groundwater monitoring event and installed a nested well pair to evaluate contaminant migration pathways in the vicinity of well T-9B.

3.1 Continued Suspension of Groundwater Extraction and Treatment System

GWET at the site has been suspended since April 2001. Although groundwater extraction at the site had been suspended, Northrop Grumman (and formerly TRW) has continued to monitor groundwater on an annual basis across the site and on a semi-annual basis for selected wells within the EAB treatment area. Northrop Grumman submits monitoring reports to the Water Board annually (AECOM 2010a, 2011a, 2012, 2013d, and 2014f). Results from groundwater monitoring performed from 2009 through 2013 continue to support suspension of groundwater extraction at the site. In particular, suspension of groundwater extraction should be continued so as not to interfere with the capture of offsite plume sources by the Philips 815 groundwater extraction. In line with this discussion, and because the GWET system had not been operated in over 11 years, it was removed from the site in November 2012 with concurrence from the Water Board.

3.2 Additional MIP Investigation

In July 2014, an expanded MIP investigation was performed in accordance with the Water Board approved Work Plan for Additional Membrane Interface Probe (MIP) Investigation (AECOM, 2014a) to supplement a previous MIP investigation conducted in 2013. The goal of the investigation was to identify the location of elevated-concentration material to later guide excavation efforts. Results of the MIP investigation indicated that elevated concentration VOC-impacted material remained within the original excavation, southwest of the Eductor. A complete description of the MIP investigation results was included in the Well Destruction and Source Removal Work Plan (AECOM, 2014b).

3.3 Installation of Sub-Slab Vapor Collection System

In August and September 2014, a passive sub-slab vapor collection (SVC) system was installed beneath the concrete floor of the entire building in accordance with the Work Plan for Passive Sub-Slab Vapor Collection System Installation (AECOM, 2014c). The purpose of the SVC system is to passively collect sub-slab vapors below the building and vent them to the atmosphere as a protective measure against vapor intrusion.

3.4 Source Area Excavation and Well Destruction

In October and November 2014, a targeted excavation of the source area was performed in accordance with the Well Destruction and Source Removal Work Plan (AECOM, 2014b). The excavation was performed using large-diameter augers to remove contaminated material. The extent of the excavation was guided by the results of the MIP investigation as well as additional confirmation soil borings. Based on the results of confirmation soil borings, the extent of the excavation was expanded, as explained in the Work Plan Addendum for Source Area Removal

Activities (AECOM, 2014d). A total of approximately 590 tons of soil and semi-solids and approximately 9,000 gallons of water were removed from the source area. A detailed description of excavation activities at the site will be provided in the Source Area Removal Summary Report (Orion Environmental Inc., 2015).

Concurrently with source area excavation activities, all wells within the building (T-2A, T-2B, T-2C, and T-3A) and the Eductor were destroyed via over-drilling per the Well Destruction and Source Removal Work Plan (AECOM, 2014b). These wells were removed to prevent them from serving as a potential vapor intrusion pathway once the building was occupied following redevelopment activities conducted by the new owner.

3.5 Additional EAB Injection Activities

Following source area excavation, and in accordance with the Work Plan for Additional Source Area Injection Activities (AECOM, 2014e), EAB injections were used to address remaining contamination that was not accessible during excavation. The majority of the injection activities targeted the area under the building footing, immediately east of the former Eductor, where excavation was not possible. A directional injection tool was used to focus distribution of EAB amendments (EVO, buffer, bioaugmentation culture, and anoxic water) under the footing. In addition, EAB amendments were injected below the excavation in an area southwest of the former Eductor. This area had been excavated to approximately 20 feet bgs with the large-diameter augers and backfilled; however, a grab groundwater sample collected after excavation activities from between 28 feet and 30 feet bgs contained elevated concentrations of VOCs.

3.6 Vapor Intrusion Evaluation

In May 2015, three sub-slab and five indoor air samples were collected to evaluate the VI pathway under current site conditions, evaluate the efficacy of the passive SVC system installed in late 2014, and support attainment of a certificate of occupancy from the City of Sunnyvale after evaluation of analytical results. Based on the results of this sampling event, chemicals detected in indoor air do not pose a human health risk under an industrial exposure scenario (AECOM, 2015b). However, USEPA stated that if tenant improvements that penetrate the concrete slab were performed after the May 2015 sampling event, additional VI sampling would need to be performed to confirm that these activities did not create new VI conduits.

To confirm that chemicals in indoor air still did not pose a risk under an industrial scenario following tenant improvements, the building tenant performed an additional monitoring event in December 2015 utilizing the same sampling methodology as the May 2015 sampling event and adjusting the sampling location rationale based on the final building layout. The results of this sampling were presented by the building tenant to USEPA in a separate report submitted in February 2016 (AECOM, 2016b).

3.7 Background Water Quality Evaluation

During 2015, a technique referred to as Environmental Sequence Stratigraphy (ESS), was used to identify and map subsurface stream channel systems (or hydrostratigraphic units [HSUs]) in the vicinity of the site that serve as primary groundwater flow and contaminant migration pathways. These pathways are shown on Figure 4 (Zone A), Figures 5 and 6 (Zone B1), and Figure 7 (Zone B2). Two HSUs were mapped in Zone B1 during the initial ESS evaluation, one

of which traces back to the onsite source area (referred to as HSU1), and another deeper unit which is oriented obliquely to the presumed groundwater gradient (referred to as HSU2) and is interpreted as a contaminant pathway from offsite sources (Figure 5). In addition, the screen interval for well T-9C, previously designated as a Zone B2 well, was reexamined and the designation of the well was changed from Zone B2 to Zone B3. A detailed summary of the methodology and conclusions of the geologic evaluation are included in the Technical Memorandum in Response to the 2014 Five-Year Review Report (AECOM, 2015b) and the Addendum to the Technical Memorandum in Response to the 2014 Five-Year Review Report (AECOM, 2016a).

In July 2016, a combination MIP and hydraulic profiling tool (HPT), referred to as MiHPT, was advanced at eight locations along the southern and western site boundaries. Hydropunch™ groundwater samples were collected from channels identified by the MiHPT survey and analyzed for VOCs. The purpose of the investigation was to evaluate contaminant migration pathways at the site by further refining the previously created ESS CSM.

The results of the MiHPT survey confirmed and further refined the results of the previous ESS evaluation and resulting CSM. The survey identified a third separate HSU in Zone B1, located at a shallower depth than previously mapped HSU1 and HSU2, referred to as HSU3. This HSU was then mapped across the site (Figure 6). Based on Hydropunch sampling results, significantly more mass of both TCE and cis-1,2-dichloroethene (cDCE) than were previously identified, based on monitoring results from well T-7B (screened in HSU2), are migrating onto the site at the southern site boundary. Based on these results, installation of additional monitoring wells were proposed in Zone B1 in HSU3 (AECOM, in preparation). Detailed results are reported in the Background Water Quality Evaluation Report (AECOM, 2016b).

3.8 Well Installation

Based on the data gaps identified after the survey, five new monitoring wells were installed at the site in August 2017 (shown on Figure 2 and screen intervals listed on Table 1). Well T-20B was installed at the southern property boundary to screen the newly identified HSU3. Well T-21B was installed in HSU3 at the western property boundary, cross gradient from the former source area.

The other three new monitoring wells were installed in the vicinity of well T-9B, which was previously identified as being screened across multiple HSUs. An initial continuous core borehole was drilled at the north end of the site in the vicinity of well T-9B to evaluate the geology and locate the three previously identified HSUs. Hydropunch samples were then collected from each of the three identified HSUs and sent to an offsite laboratory for analysis of VOCs. The analytical results appeared to confirm the interpretation of the geology. Therefore, three wells were installed (T-22B, T23B, and T-24B) with the screened intervals each targeting HSUs 1, 2, and 3. Detailed information regarding well installation procedures is included in the Well Installation Report (AECOM, 2018).

Based on comments received from USEPA on the Well Installation Report, additional investigation was performed in the vicinity of well T-9B. Three continuous boreholes were drilled and Hydropunch samples were collected from each of the observed HSUs in each boring. Based on the analytical results of the Hydropunch samples, a dual-nested wells, T-25Bs and T-25Bd,

were installed to increase understanding of contaminant concentrations in each of the HSUs (AECOM, 2018).

3.9 Continued Groundwater Monitoring Program

The groundwater monitoring program at the site historically included two components: 1) evaluation of NPC and 2) evaluation of the EAB program. The NPC evaluation was initiated in April 2001 and involves the assessment of volatile organic compound (VOC) concentration trends after complete suspension of groundwater extraction at the site. Section 3.1 discusses the groundwater extraction and treatment (GWET) system that was previously operated at the site. The EAB program was initiated in October 2000 to more aggressively remediate the former site source area (the former UST area). As discussed in the 2017 Annual Groundwater Monitoring and Remedial Progress Report, geochemical conditions conducive to EAB are still present at the site; however, monitoring was discontinued due to the low TOC concentrations and microbial populations (Appendix C) which did not support ongoing annual monitoring.

VOCs detected during the October 2018 groundwater sampling events are summarized in Table 3. The historical results for previous monitoring events performed since 1990, including monitoring events for the EAB program and the NPC evaluation, are presented in Appendix C. Historically, low concentrations of other VOCs (e.g., chloroform) have occasionally been detected. These VOCs are not listed in Table 3 or Appendix C as they are not associated with site operations and have not been detected above their site cleanup requirements (SCRs) (e.g., California Maximum Contaminant Levels [MCLs] or action levels, federal MCLs, or risk-based levels).

3.9.1 Water-Level Elevations

The October 2018 water-level elevation data for the site wells are presented in Table 2 and historical water-level data are presented in Appendix B. The historical data include measured depths to groundwater and the calculated water-level elevations recorded for each well since 1986. Potentiometric surface contours generated for Zones A (from first encountered groundwater to approximately 20 feet above mean sea level [MSL]), B1 (approximately 20 above MSL to 0 feet above MSL), and B2 (approximately 0 feet above MSL to 20 feet below MSL) using the October 2018 water-level elevation data are presented on Figures 4 through 7. In both Zone B3 and Zone B4, there is only one site well screened within each zone, and therefore a potentiometric surface cannot be contoured for those zones.

Depth to water, as measured in October 2018, indicates that the static depth to the water table in Zone A ranged from approximately 5.71 feet (well 36D) to 7.35 feet below ground surface (bgs) (well 38S), see Table 2. The regional and local direction of groundwater movement in Zone A is to the north at an average horizontal gradient of 0.005 horizontal foot per vertical foot, consistent with previous monitoring events. The general horizontal groundwater gradient in Zone B1 is to the north with a northwestern component at the south end of the site. Based on the recent ESS evaluation (Section 2.3.2), groundwater movement is influenced locally by channelized flow related to stream deposits. The gray areas on Figures 4 through 7 represent areas of low permeability silt/clay-rich floodplain deposits that impede groundwater flow relative to the higher permeability sand/gravel stream channel deposits. Groundwater movement in Zone B2 is to the northwest. Water levels and groundwater movement in Zones B1 and B2 have historically been,

and continue to be, affected by groundwater extraction at the Philips sites (located to the west at 815 Stewart Drive and 440 Wolfe Road).

Water surface elevations in Zone A wells during the October 2018 monitoring event increased in elevation by 0.3 foot to 0.7 feet compared to the October 2017 measurements. Water levels in Zone B1 wells during October 2018 also increased in elevation by 0.2 feet to 0.8 feet compared to October 2017. Water levels in Zone B2 wells during October 2018 increased in elevation by 0.5 feet to 0.9 feet compared to October 2017. Over the five-year period from 2014 through 2018, groundwater elevations at the site generally increased across all three Zones.

3.9.2 Groundwater Analytical Results

VOCs detected during the October 2018 groundwater sampling events are summarized in Table 3. The historical results for previous monitoring events performed since 1990, including monitoring events for the EAB program and the NPC evaluation, are presented in Appendix C. Historically, low concentrations of other VOCs (e.g., chloroform) have occasionally been detected. These VOCs are not listed in Table 3 or Appendix C as they are not associated with site operations and have not been detected above their site cleanup requirements (SCRs) (e.g., California Maximum Contaminant Levels [MCLs] or action levels, federal MCLs, or risk-based levels).

Figures 8 through 10 present the analytical results for TCE, cDCE, and vinyl chloride (VC) for each of the zones (A, B1, and B2). Graphs of TCE and cDCE concentrations vs. time for representative site wells, including seven wells in Zone A (T-2A, T-7A, T-8A, T-9A, T-13A, T-15A, and T-16A) and TCE for seven wells in Zone B1 (T-2B, T-4B, T-7B, T-8B, T-9B, T-10B, and T-17B), are presented on Figures 11 through 13. Figure 14 presents TCE concentrations vs. time for representative on-site Zone B2 wells (T-2C, T-10C, T-11C, and T-12C). Note that wells T-2A, T-2B, and T-2C are still included on these figures for reference, even though the wells no longer exist.

Graphs of concentrations of tetrachloroethene (PCE), TCE, cDCE, trans-1,2-dichloroethene (tDCE), and VC for October 2018 at select wells, along the general groundwater flow direction in Zone A, across the site are presented on Figure 15. Due to the separate HSUs in Zone B1 and differing contaminant profiles in these HSUs (AECOM, 2016b), a similar figure was not created for Zone B1.

VOC analytical results, including discussion of VOC trends over the past 5 years for each part of the site are discussed as follows: upgradient Zone A and Zone B1 wells (Section 3.9.2.1), downgradient Zone A and Zone B1 wells (Section 3.9.2.2), and Zone B2 wells (Section 3.9.2.3). Note that former source area wells are not discussed as they were destroyed in late 2014 and therefore not sampled since that date. However, historical data for former source area wells are still included on Figures 11 through 14 and in Appendix C.

For selected site wells, trend plots of chlorinated ethene concentrations prior to and after suspension of groundwater extraction are presented in Appendix D. Copies of the laboratory analytical reports and chain-of-custody forms for the 2018 groundwater monitoring events are in Appendix E.

3.9.2.1 Site Zone A and Zone B1 Upgradient Wells

Impacts to the site from offsite sources continue to be apparent for Zones A and B1.

Zone A

Groundwater analytical results from Zone A wells 36S, 36D, T-7A, and 37S, located along the upgradient southern site boundary, indicate migration of VOCs, primarily TCE and cDCE, onto the site. Concentrations of TCE migrating onto the site (particularly from areas around well T-7A) are similar to or greater than those for wells downgradient of the former site source area in Zone A (see Figure 15).

- Between 2014 and 2018, Zone A wells 36D and 37S, located along the upgradient site boundary, have had TCE concentrations ranging from 4.2 micrograms per liter (μg/L) to 420 μg/L and cDCE concentrations ranging from 2.7 μg/L to 43 μg/L. Concentrations of both TCE, cDCE, and Freon 113 (associated with the Philips site) detected in Well 37S increased by an order of magnitude between 2016 and 2017, but decreased in 2018.
- Between 2014 and 2018, TCE and cDCE concentrations for T-7A, located approximately 175 feet upgradient of the former site source area, have ranged from 160 μg/L to 220 μg/L and 64 μg/L to 100 μg/L, respectively. In October 2018, the concentrations of TCE and cDCE in T-7A were 140 μg/L and 81 μg/L, respectively.

Zone B1

Groundwater analytical results for Zone B1 wells T-5B, T-7B, and T-20B along the upgradient site boundary also indicate VOC migration onto the site.

- Between 2006 and 2011, TCE, cDCE, and Freon 113 concentrations for Zone B1 well T-5B exhibited fluctuations likely due to periodic shutdown of the Philips 815 groundwater extraction system, located adjacent to the southwesterly site boundary, which allowed migration of impacted groundwater from upgradient, offsite source areas onto the site. Concentrations remained relatively stable from 2011 through 2015, with TCE concentrations ranging from 1,400 μg/L to 1,800 μg/L. In 2016, concentrations of TCE, cDCE, and Freon 113 in well T-5B decreased to 170 μg/L, 8.8 μg/L, and 6.1 μg/L, respectively. In 2017, the concentrations of TCE, cDCE, and Freon 113 increased to 1,500 μg/L, 54 μg/L, and 160 μg/L, respectively, which are all within the range observed between 2011 and 2015. In 2018, concentrations of TCE, cDCE, and Freon 113 (1,200 μg/L, 39 μg/L, and 120 μg/L, respectively) were similar to 2017 and the general historical range since 2011.
- Between 2007 and 2018, TCE concentrations for Zone B1 well T-7B have fluctuated between 21 μg/L and 200 μg/L. In 2018, the concentrations of TCE, and cDCE, and Freon 113 were 54 μg/L, 2.4 μg/L, and 1.0 μg/L, respectively. Well T-20B was installed in 2017 to monitor concentrations coming on site in HSU3, a shallower HSU not screened by well T-7B. Concentrations of TCE and cDCE in well T-20B were 230 μg/L and 280 μg/L, respectively, in 2017, indicating that higher concentrations are migrating onto the site than were previously monitored by well T-7B. In 2018, concentrations of TCE, cDCE, and Freon 113 were 230 μg/L, 190 μg/L, and 2.1 μg/L, respectively.

In Zone B1, the historical presence of Freon 113, a VOC which has not been attributed to the former site source area, has been demonstrated to be related to offsite sources. Historical and/or current Freon 113 concentration data (Appendix C) from site Zone B1 wells T-5B, T-7B, T-17B, and T-19B continue to indicate impact from offsite sources. Fluctuating concentrations between 2008 and 2018 in one Zone B1 well, T-5B, further supports the benefit of continued shutdown of onsite extraction to mitigate further migration of VOCs from offsite sources onto the site.

3.9.2.2 Site Zone A and Zone B1 Downgradient Wells

Downgradient of the former source area, the influence of the EAB program has been more pronounced for Zone B1 than Zone A, consistent with greater hydraulic connection and higher transmissivity in the deeper zones due to more laterally continuous permeable zones. As described in Section 2.5, EAB remedial activities, consisting of cheese whey injections, were conducted in downgradient Zone A wells (T-13A, T-14A, and T-18A through T-24A) in September 2007, December 2007, March 2008, and June 2008. In November 2011, EHC-L was injected into the same downgradient Zone A wells and ABC+ was injected in direct push points downgradient of the source area in Zones A and B1. Additional limited EAB injections were also conducted beneath the building footer in December 2014 to address soil that was not accessible during source area excavation activities. Monitoring of EAB parameters (total organic carbon (TOC), microbial population, and anions) was discontinued in 2018 based on the length of time that has elapsed since the last electron donor injections and lack of observed TOC, microbial population, or changes in anion concentrations (Appendix C).

Zone A

The enhanced anaerobic bioremediation (EAB) process and source excavation activities have removed considerable VOC mass from the former site source area and immediate vicinity. This has reduced the VOC mass migrating to the downgradient site areas. The cessation of groundwater extraction has enhanced conditions by returning the groundwater gradient to its natural condition, allowing for longer residence times between wells T-8A and T-9A, and hence, higher attenuation potential within these areas. TCE concentrations for well T-9A are consistently lower than the upgradient property boundary well T-7A, and total chlorinated ethene concentrations for T-13A, T-14A, T-8A, T-15A, T-16A, and T-9A (listed from upgradient to downgradient) are less than those for upgradient property boundary well T-7A (see Figure 15 and Appendix D).

In October 2018, TCE concentrations remained consistent in all of the former cheese whey and EHC-L injection wells sampled as compared to 2017. However, these concentrations remained below the concentration of TCE in upgradient monitoring well T-7A, which represents contamination migrating onto the site. Concentrations of cDCE were generally stable.

Well 38S, located near the western site boundary and screened in Zone A, has consistently displayed a differing contaminant profile from other Zone A wells (higher cDCE concentrations and presence of Freon 113). Based on ESS evaluation, a northeast-oriented channel traverses the neighboring Philips 815 site and continues onto and across the site in the vicinity of well 38S (Figure 4). Therefore, it is likely that well 38S is impacted by offsite sources.

Zone B1

As discussed in Section 2.3.2, two HSUs were mapped in Zone B1 during the initial ESS assessment. HSU1 runs north-south across the site and includes the former TRW source area. HSU2 is in communication with offsite contaminant source areas to the southwest that contribute to contamination found in onsite wells T-17B, T-4B, and T-9B. As discussed in Section 2.3.2 and shown on Figure 6, during the background water quality evaluation, a third shallower HSU, HSU3, was identified in Zone B1 that contains higher concentrations of VOCs at the southern property boundary than were previously monitored by monitoring well T-7B, as evidenced by the concentrations detected in T-20B.

In downgradient monitoring well T-8B, which is screened across both HSU1 and HSU3, total chlorinated ethene concentrations decreased by more than 50 percent (%) following initiation of Zone B1 EAB activities in 2000 (see Appendix C). TCE concentrations increased from October 2007 to October 2013 (from 7.5 μ g/L to 36 μ g/L), decreased to 10 μ g/L in October 2014, and remained below the MCL (5 μ g/L) through October 2017. In 2018, the TCE concentration increased to 18 μ g/L. Concentrations of daughter product cDCE have significantly fluctuated in this well since 2009 with concentrations ranging from 6.2 μ g/L to 460 μ g/L.

In well T-4B, located near the western property boundary and screened in HSU2, the TCE concentration in October 2018 was not detected. Concentrations of cDCE have been consistently higher than TCE since 2000, and have fluctuated between 120 µg/L and 700 µg/L since 2007, with one exception of 830 µg/L in 2013. The cDCE concentrations in this well have also been historically higher compared to other Zone B1 wells since 2005. These elevated cDCE concentrations could be attributable to two factors: (1) the migration of EAB dechlorination products (cDCE, VC, and ethene) in groundwater from the former site source area, and (2) the migration of cDCE onto and through the site from offsite sources via HSU2. Elevated concentrations of TCE, cDCE, and Freon 113, associated with offsite sources) detected in well T-21B (installed in 2017), located along the western property boundary cross gradient from the former site source area, support that contaminants are migrating from offsite at the western property boundary. Elevated concentrations of TCE and cDCE similar to those detected in well T-21B were also detected in well T-17B along the western property boundary.

It is inferred that well T-9B, screened in both HSU1 and HSU2, was historically impacted by an offsite source as a result of pumping from T-9B, inducing migration of VOCs onto the site in Zone B1 (CDM, 1999 and 2000c). This conclusion is supported by the historical substantially higher TCE concentrations for well T-9B compared to upgradient Zone B1 wells T-8B and T-10B, and the historical presence of Freon 113 in T-9B, which is not attributed to the site. The decrease in TCE concentrations following the suspension of groundwater extraction at T-9B, different contaminant profile from upgradient onsite wells, and the mapping of HSUs within Zone B1 support the conclusion that groundwater around well T-9B is impacted by migration of VOCs onto the site.

Contaminant concentrations in the new wells T-25Bs and T-25Bd are distinct from the existing monitoring well cluster (wells T-22B, T-23B, and T-24B) and are generally consistent with those

in wells T-9B. Concentrations of TCE detected in new wells T-25Bs and T-25Bd and existing well T-9B were 350 μ g/L, 450 μ g/L and 220 μ g/L, respectively. Concentrations of cDCE in wells T-25Bs, T-25Bd, and T-9B were 270 μ g/L, 77 μ g/L, and 170 μ g/L, respectively (Table 2). As discussed in Section 2.0, Freon 113 was detected in well T-25B at a concentration of 5.1 μ g/L. Although not detected during this sampling event, Freon 113 has been detected historically in well T-9B. Based on the similarity in concentrations to well T-9B and the presence of Freon 113, the new wells are screened in the distinct HSUs (HSU1 and HSU2) and serve to monitor the groundwater quality within the HSUs.

3.9.2.3 Site Zone B2 Wells

In Zone B2, a lower permeability unit oriented to the north-northeast traverses the site (Figure 7). Onsite well T-10C is located on the western margin of this low permeability unit, potentially indicating a degree of communication with contamination coming from offsite. This is further supported by the significantly different contaminant concentrations detected in well T-10C compared to onsite wells in Zone B2 (e.g., the presence of Freon 113 at significantly higher concentrations than other Zone B2 wells at the site). TCE and cDCE concentrations at T-11C to the east ranged from 3 μ g/L to 460 μ g/L and from non-detect to 26 μ g/L, respectively between 2014 and 2018. Concentrations in well T-10C of TCE and cDCE were 260 μ g/L and 890 μ g/L, respectively (see Figure 10). Concentrations in Zone B2 are generally within the range seen historically (Appendix C). VOC concentrations for Zone B2 in the central site area decreased an order of magnitude following suspension of groundwater extraction from site well T-2C in November 2000 as well as the presence of Freon 113 in all downgradient Zone B2 monitoring wells suggests that contamination in Zone B2 is at least partially attributed to contamination pulled on site during groundwater extraction.

3.9.2.4 Offsite Groundwater Analytical Data

VOC results for the October 2018 monitoring events conducted on the nearby Philips and AMD properties were provided to Northrop Grumman and reviewed during the preparation of this annual report. These data indicate that the neighboring Philips 815 site continues to demonstrate substantial VOC impact in groundwater with maximum October 2018 concentrations of TCE and cDCE of 72,000 µg/L and 46,000 µg/L, respectively.

VOC data for the AMD 901/902 site, located upgradient of the site, indicate a maximum TCE concentration of 420 μ g/L for Zone A and 200 μ g/L for Zone B1. TCE concentrations on the AMD 915 site, located downgradient of the site, indicate a maximum of 59 μ g/L for Zone A. The VOC concentrations observed in site Zone A wells 36S, 36D, and T-7A located along the upgradient site boundary are attributed to the migration of contamination from upgradient properties such as Mohawk Laboratories and AMD.

4.0 REMEDIATION EFFECTIVENESS EVALUATION

This section presents an evaluation of the effectiveness of remedial actions at the site including the previous groundwater extraction system and EAB program. In addition, this section presents an evaluation of the effectiveness of the overall remedial actions in supporting enhanced natural attenuation for the site. The combined past and on-going removal/treatment of VOCs has

significantly reduced and continues to reduce the mass of VOCs at and in the near vicinity of the former site source area.

4.1 Effectiveness of Groundwater Extraction and Treatment System

The GWET system operated from 1985 to April 2001. The GWET system consisted of seven extraction wells (completed at three cluster locations), the Eductor, transmission pipelines, and a treatment system. Although groundwater extraction no longer occurs, the T-8 and T-9 well clusters were used for groundwater monitoring in 2017. The GWET wells were as follows:

- T-2 cluster: Wells T-2A, T-2B, and T-2C, completed in Zones A, B1, and B2, respectively. These wells were destroyed in November 2014.
- T-8 cluster: Wells T-8A and T-8B, completed in Zones A and B1, respectively.
- T-9 cluster: Wells T-9A and T-9B, completed in Zones A and B1, respectively.
- Eductor: A perforated PVC pipe within a gravel-backfilled excavation (Site source area), completed in Zone A at a location adjacent to and immediately up gradient of the T-2 cluster. The Eductor was destroyed in October 2014.

Extracted groundwater was treated at the site via an air stripper to remove VOCs, under a Bay Area Air Quality Management District permit. Treated groundwater was discharged to the storm drain under a National Pollutant Discharge Elimination System permit. A total of approximately 92.5 million gallons of groundwater were extracted prior to suspension in 2001, from which approximately 3,100 pounds of trichloroethene (TCE) were removed.

Pumps in extraction wells at and near the former site source area (T-2A, T-2B, T-2C, T-8A, T-8B, and the Eductor) were turned off prior to, or shortly after, the initiation of the EAB program (RWQCB, 2000). In April 2001, pumps in the remaining two extraction wells, located near the northern property boundary (T-9A and T-9B), were turned off to allow the property owner to conduct site redevelopment activities (RWQCB, 2001b). Subsequently, approval from RWQCB was received for the continued suspension of groundwater extraction based on changes in VOC concentrations after suspension (CDM, 2001a and RWQCB, 2001c). As a result of continued improvements in groundwater VOC concentrations across the site, RWQCB approved suspension of groundwater extraction and recommended suspension be continued in their Five-Year Review report to USEPA (RWQCB, 2004a and 2004b). USEPA approved RWQCB's Five-Year Review Report (USEPA, 2004). Since April 2001, groundwater extraction at the site has not occurred. The GWET system was dismantled and removed from the site in November 2012 because it had deteriorated beyond repair.

Suspension of groundwater extraction should be continued so as not to interfere with:

- The robust biodegradation processes present within the EAB program treatment areas, particularly within the former site source area where the highest mass removal is occurring;
- The enhanced attenuation conditions present in the onsite, Zone A downgradient areas, which
 have resulted from both reduction of VOC mass flux from the EAB treatment areas and
 increased attenuation potential from suspension of extraction; and,

 The capture of offsite plume sources by the Philips 815 Stewart Drive site Zone B1 and Zone B2 groundwater extraction system.

4.2 Enhanced Anaerobic Bioremediation Program

Following completion of CDM's *Evaluation of Natural Attenuation and Chemical Oxidation Report* (CDM, 2000a) and approval from RWQCB (RWQCB, 2000), Northrop Grumman (then TRW Inc.) implemented the EAB program at the site in 2000. The following presents the chronology of the implementation and progress of the EAB program:

Date	Report/Letter/Event		
March 2000	CDM's report on the evaluation of natural attenuation and chemical oxidation recommended that in situ remediation via EAB be implemented for Zone B1 (CDM, 2000a).		
August 2000	CDM submitted a work plan to implement an EAB pilot program in Zone B1 at the former site source area (CDM, 2000b).		
October 2000	After verbal approval from RWQCB, CDM implemented the EAB pilot program by injecting polylactate ester (via Regenesis' Hydrogen Release Compound [HRC] products) into Zone B1 in and around the former site source area (see Figure 3).		
April 2001	Based on the periodic monitoring of Zone A wells within the EAB treatment area, CDM determined that the limited amount of HRC product that was injected into Zone A during the injection into Zone B1 had significantly changed conditions in Zone A to support EAB. CDM submitted an addendum to the EAB work plan to inject electron donor int Zone A. RWQCB approved the addendum. (CDM, 2001 and RWQCB, 2001c)		
June 2001	CDM injected slow-releasing HRC to target Zone A. In addition, injections within the footprint of the former treatment system, which was not possible during October 2000 injection, were advanced into Zone B1.		
December 2003, January 2004, and February 2005	Effectiveness monitoring showed that the EAB application increased the rate of VOC biodegradation occurring within the former site source area and accelerated VOC attenuation rates across the downgradient portions of the site.		
August 2005	Subsequent to RWQCB approval (RWQCB, 2005), the EAB pilot program was expanded to include groundwater immediately downgradient of the former site source area in Zone A and Zone B1 (CDM, 2005b) (see Figure 3).		
April 2006	CDM submitted the Revised Proposed Plan to USEPA to change the groundwater remedy from GWET to in situ bioremediation (CDM, 2006).		
July 2006	RWQCB issued a letter to USEPA in which they concurred with conclusions of the Revised Proposed Plan and recommended to USEPA to change the groundwater remedy for the site from GWET to in situ bioremediation (RWQCB, 2006).		

Date	Report/Letter/Event			
January 2007	EAB performance monitoring showed that EAB continued to improve the groundwater quality and enhance VOC degradation in and around the former site source area; however, VOC degradation had slowed at downgradient portions of the plume due to competing electron acceptors (Northrop Grumman, 2007).			
June 2007	CDM submitted a work plan for additional Zone A EAB remedial activities, which proposed to conduct four quarterly cheese whey injections in the expanded portion of Zone A downgradient of the former site source area (CDM, 2007).			
August 2007	Subsequent to RWQCB approval (RWQCB, 2007), CDM installed seven injection wells and one monitoring well as part of the downgradient Zone A EAB treatment area.			
September 2007	Tamalpais Environmental Consultants (TEC), under CDM oversight, performed the first of four quarterly cheese whey injection events into wells T-13A, T-14A, and T-18A through T-24A.			
November 2007	CDM performed a one-time bioaugmentation event into wells T-13A, T-14A, and T-18A through T-24A, using groundwater from the Eductor.			
December 2007	TEC, under CDM oversight, performed the second of four quarterly cheese whey injection events into wells T-13A, T-14A, and T-18A through T-24A.			
March 2008	TEC, under CDM oversight, performed the third of four quarterly cheese whey injection events into wells T-13A, T-14A, and T-18A through T-24A.			
June 2008	TEC, under CDM oversight, performed the last of four quarterly cheese whey injection events into wells T-13A, T-14A, and T-18A through T-24A.			
January 2010	EAB performance monitoring showed depletion of electron donor (cheese whey) and initial rebound of competing electron acceptors in the expanded EAB treatment area (Northrop Grumman, 2010).			
October 2010	AECOM submitted a work plan for additional Zone A EAB remedial activities, which proposed to conduct one emulsified vegetable oil (EVO) injection and one neat vegetable oil injection in the former site source area.			
October 2010	AECOM injected EVO into the Eductor, located in Zone A within the former site source area excavation.			
November 2010	Vironex, under AECOM oversight, injected neat vegetable oil into the Eductor, located in Zone A within the former site source area excavation.			
November 2011	AECOM submitted a work plan for additional EAB remedial activities, which proposed to inject EHC-L and ABC+ downgradient of the former site source area.			
November 2011	Redox Tech, under AECOM oversight, injected EHC-L into injection wells T-13A, T-14A, and T-18A through T-24A and injected ABC+ into Zone A and Zone B1 via nine direct push locations (see Figure 3).			

Date	Report/Letter/Event
December 2014	Vironex, under AECOM oversight, injected EVO under building footings in the vicinity of the former source area.

The EAB program is described in detail in the Five-Year Status and Effectiveness Report (AECOM, 2014f). Due to the EAB program, the rate of VOC dechlorination increased in all wells and the main parent compounds (PCE and TCE) were reduced by several orders of magnitude within and downgradient of the source area. The decreases in the parent compounds were supported by increases in daughter compounds (cDCE, VC, and ethane/ethene; Appendix C).

Geochemical conditions conducive to EAB are still present at the site; however, the low TOC concentrations and microbial populations do not support ongoing annual monitoring. Presence of Dhc populations, albeit at low detected counts in the wells sampled, provides evidence for the existence on-site of a viable ongoing mechanism for ongoing contaminant mass destruction.

5.0 CONCLUSIONS AND RECOMMENDATIONS

This section presents AECOM's conclusions regarding the GWET system and the EAB program as well as recommendations for changing the site groundwater remedy from GWET system to EAB with continued groundwater monitoring.

The offsite Philips extraction system currently maintains capture of the offsite contamination present in Zone B2 at the site, and the onsite and offsite contamination present in Zone B1. These capture zones extend onto the site by design in order to maintain effective capture of offsite Philips source areas.

Since suspension of the onsite GWET system in 2001, the Zone A EAB processes induced across the site have been effective in reducing VOC mass within the treatment areas.

In the absence of complete remediation of upgradient offsite plumes, an attainable goal for the site is to reduce site VOC mass such that the attenuation rate of VOCs across the site can be attributed solely to the attenuation dynamics of the upgradient offsite plumes (i.e., decreases in VOC concentrations to background levels [concentrations migrating onsite from upgradient offsite sources]). This reduction of mass has been achieved to date through the extensive source area excavation performed in 2014 as well as more than a decade of successful EAB remediation. AECOMs recommends using the refined ESS CSM to develop an appropriate monitoring program to be presented in a Focused Feasibility Study.

6.0 REFERENCES

AECOM, 2010a. 2009 Annual Groundwater Monitoring Report, Former TRW Microwave Facility, 825 Stewart Drive Sunnyvale, California. January 31.

AECOM, 2010b. Work Plan for Additional Enhanced Anaerobic Bioremediation Activities, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. October 15.

- AECOM, 2010c. 2010 Annual Groundwater Monitoring Report, Former TRW Microwave Facility, 825 Stewart Drive Sunnyvale, California. December.
- AECOM, 2011. 2010 Annual Groundwater Monitoring Report, Former TRW Microwave Facility, 825 Stewart Drive Sunnyvale, California. January 31.
- AECOM, 2012. 2011 Annual Groundwater Monitoring Report, Former TRW Microwave Facility, 825 Stewart Drive Sunnyvale, California. January 31.
- AECOM, 2013a. Work Plan for Membrane Interface Probe and Remediation Activities at the Former Source Area Excavation, Former TRW Microwave Facility, 825 Stewart Drive Sunnyvale, California. June 25.
- AECOM, 2013b. Membrane Interface Probe (MIP) Activities Report, Former TRW Microwave Facility, 825 Stewart Drive Sunnyvale, California. August 27.
- AECOM, 2013c. Vapor Intrusion Evaluation Sampling and Analysis Work Plan, Former TRW Microwave Facility, Sunnyvale, California. October 29, 2013.
- AECOM, 2013d. 2012 Annual Groundwater Monitoring Report, Former TRW Microwave Facility, Sunnyvale, California. January 31.
- AECOM, 2014a. Well Destruction and Source Removal Work Plan, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. November 12, 2014.
- AECOM, 2014b. Work Plan for Additional Source Area Injection Activities, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. November 10, 2014.
- AECOM, 2014c. Work Plan for Passive Sub-Slab Vapor Collection System Installation, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. August 13, 2014.
- AECOM, 2014d. Work Plan Addendum for Source Area Removal Activities, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. November 12, 2014.
- AECOM, 2014e. Work Plan for Additional Source Area Injection Activities, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. November 10, 2014.
- AECOM, 2015f. Five-Year Status and Effectiveness Evaluation Report, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. February 28, 2014.
- AECOM, 2015a. Annual Groundwater Monitoring and Remedial Progress Report, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. February 6, 2015.
- AECOM, 2015b. Technical Memorandum in Response to the 2014 Five-Year Review Report, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, California. March 31, 2015.
- AECOM, 2016a. Addendum to the Technical Memorandum in Response to the 2014 Five-Year Review Report, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, California. January 25, 2016.

- AECOM, 2016b. Background Water Quality Evaluation Report, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, California. November 15, 2016.
- AECOM, 2018. Well Installation Report, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, California. May 3, 2018.
- AECOM, 2019. Well Installation Report Addendum, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, California.
- AECOM, in prep. Conceptual Site Model Addendum, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, California.
- CDM, 1999. Letter to RWQCB regarding Interpretation of Groundwater TCE Data in B1 Zone, Former TRW Inc. Microwave Site, Sunnyvale, California. April 26, 1999.
- CDM, 2000a. Evaluation of Natural Attenuation and Chemical Oxidation Report, Former TRW Microwave Facility. March 24, 2000.
- CDM, 2000b. Work Plan Enhanced Anaerobic Bioremediation Pilot Test. August 22, 2000.
- CDM, 2000c. Letter to RWQCB regarding Request Shutdown of Extraction Wells T-9B and T-2C. May 10, 2000.
- CDM, 2001. Letter to RWQCB regarding Addendum to Work Plan for Enhanced Anaerobic Bioremediation Pilot Test. April 5, 2001.
- CDM, 2004. Letter to Water Board regarding Destruction of Monitoring Wells T-1A and T-1B at the Former TRW Microwave Facility. February 11, 2004.
- CDM, 2004c. Report of Findings Installation and Operation of a Temporary Mechanical Ventilation System and Indoor Air Sampling. May 11.
- CDM, 2004d. Work Plan for Installation and Operation of a Temporary Mechanical Ventilation System and Indoor Air Sampling. March 29.
- CDM, 2004e. Letter to Water Board regarding Well 36D at the Former TRW Microwave Facility. June 22.
- CDM, 2004f. Work Plan –Additional Indoor Air Sampling. September 22.
- CDM, 2004g. Report of Findings October 2004 Indoor Air Sampling. November 17.
- CDM, 2005. Addendum to Work Plan for Enhanced Anaerobic Bioremediation Pilot Test, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. July 20, 2005.
- CDM, 2005a. Risk Management Plan (Preliminary Draft), 825 Stewart Drive, Sunnyvale, California. April 26.

- CDM, 2005b. Addendum to Work Plan for Enhanced Anaerobic Bioremediation Pilot Test, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. July 20.
- CDM, 2006. Revised Proposed Plan, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. April 11, 2006.
- CDM, 2007. Work Plan for Additional Zone A Enhanced Anaerobic Bioremediation Activities, Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. June 28, 2007.
- CDM, 2009a. Five-Year Status and Effectiveness Evaluation Report, May 2004 to December 2008, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, CA. May 20.
- CDM, 2009b. Revised Proposed Plan, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, California. September 30.
- HLA, 1991a. Feasibility Study Report, The Companies, Sunnyvale, California. Report prepared for AMD, Signetics, and TRW. January 1991.
- HLA, 1991b. Remediation Investigation Report, The Companies, Sunnyvale, California. Report prepared for AMD, Signetics, and TRW. January 1991.
- Northrop Grumman, 2006. 2005 Annual Groundwater Monitoring Report, Former TRW Microwave Facility. January 30.
- Northrop Grumman, 2007. 2006 Annual Groundwater Monitoring Report, Former TRW Microwave Facility, January 31, 2007.
- Northrop Grumman, 2008. 2007 Annual Groundwater Monitoring Report. Former TRW Microwave Facility, 825 Stewart Drive, Sunnyvale, California. January 31.
- Northrop Grumman, 2010. 2009 Annual Groundwater Monitoring Report, Former TRW Microwave Facility, January 29, 2010.
- Orion Environmental, Inc. 2015. Source Area Soil Removal Report, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, California. March 20, 2015.
- RWQCB, 1999. Letter to TRW regarding Revisions to Sampling and Reporting Schedule for TRW Facility. July 1, 1999.
- RWQCB, 2000. Letter to TRW regarding Response to Request to Shut Down Extraction Wells T-9B and T-2C. November 9, 2000.
- RWQCB, 2001a. Letter to TRW regarding Approval of Five-Year Status and Effectiveness Evaluation Report for the Former TRW Microwave Site. October 2, 2001.
- RWQCB, 2001b. Letter to CDM regarding acceptance of March 22, 2001 letter requesting approval to relocate groundwater treatment system. March 29, 2001.

- RWQCB, 2001c. Letter to TRW regarding Approval of Addendum to Work Plan for Enhanced Anaerobic Bioremediation Pilot Test. April 6, 2001.
- RWQCB, 2004a. Letter to Northrop Grumman regarding Approval of Indoor Air Sampling Reports, EAB Summary Report, and Non-Pumping Conditions Report, Former TRW Microwave Facility. February 17, 2004.
- RWQCB, 2004b. Submittal of Five-Year CERCLA Review for Eastern Sunnyvale TRW and AMD Superfund Sites, Sunnyvale, Santa Clara County, California. September 30, 2004.
- RWQCB, 2004c. Letter to Northrop Grumman regarding Approval of Work Plan for Installation and Operation of a Temporary Mechanical Ventilation System and Indoor Air Sampling. April 9.
- RWQCB, 2004d. Letter to Northrop Grumman regarding Approval of Mechanical Ventilation and Indoor Air Sampling Report. July 1.
- RWQCB, 2004e. Personal communication from Mr. Keith Roberson (Water Board) to Mr. Pawan Sharma (CDM) regarding CDM's Letter to Water Board regarding Well 36D at the Former TRW Microwave Facility. August 20.
- RWQCB, 2004f. Letter to Northrop Grumman regarding Approval of Work Plan Additional Indoor Air Sampling. October 7.
- RWQCB, 2004g. Letter to TRW regarding Approval of Report of Findings October 2004 Indoor Air Sampling, December 29.
- RWQCB, 2005. Letter to Northrop Grumman regarding Approval of Addendum to Work Plan for Enhanced Anaerobic Bioremediation Pilot Test. July 27, 2005.
- RWQCB, 2006. Letter to U.S. Environmental Protection Agency Region 9 regarding Concurrence with Revised Proposed Plan, TRW Microwave Facility. July 24, 2006.
- RWQCB, 2007. Letter to Northrop Grumman regarding Approval of Work Plan for Additional Zone A Enhanced Anaerobic Bioremediation Activities. July 2, 2007.
- RWQCB, 2009. Third Five-Year Review, TRW Microwave Site, 825 Stewart Drive, Sunnyvale, Santa Clara County, California. September.
- RWQCB, 2010. Letter to Northrop Grumman regarding Requirement for Focused Feasibility Study. November 18.
- RWQCB, 2012. Letter to Northrop Grumman Requirement for Vapor Intrusion Sampling and Analysis Work Plan and Report. December 6.
- Tech Facility 1, 1992. Covenant and Agreement to Restrict Use of Property (Deed Restriction), 825 Stewart Drive, Sunnyvale, California. August 10, 1992.

- USEPA, 1991. Record of Decision, Advanced Micro Devices #901/902, Signetics, TRW Microwave, Combined Superfund Sites, Sunnyvale, California. September 11, 1991.
- USEPA, 2004. Five-Year Review Report for the TRW Microwave Superfund Site, Sunnyvale, CA. September 30, 2004.
- Weiss Associates, 1996a. Five-Year Status Report and Effectiveness Evaluation, Former TRW Microwave Site, 825 Stewart Drive, Sunnyvale, California. Prepared for TRW Inc. June 19.
- WA (Weiss Associates), 1996b. Groundwater Extraction Modification Proposal. September 6.
- USEPA, 2014. Notice of Lead Agency Transfer California Regional Board to US EPA; Triple Site: AMD 901/902 Thompson Place Superfund Site, Philips (formerly Signetics) Site, and TRW Microwave Superfund Site and Off-site Operable Unit, Sunnyvale, California. August 7, 2014.

TABLES

Table 1
Well Completion and Sampling Information
Former TRW Microwave Site
825 Stewart Drive, Sunnyvale, California

		Screen Interval	Total Depth	Top of Casing Elevation		
Well Number	Zone	(feet bgs)	(feet bgs)	(feet, MSL)	U.S. EPA Test Method	
EDUCTOR	A	8-16	16.5	42.24	Well Abandoned in 2014	
T-1A	A	10-20	20	41.16	Well Abandoned in 2004	
T-1B	B1	28-38	38	41.72	Well Abandoned in 2004	
T-2A	A	10-20	20	42.16	Well Abandoned in 2014	
T-2B	B1	23-33	33	42.23	Well Abandoned in 2014	
T-2C	B2	51-59	59	41.38	Well Abandoned in 2014	
T-3A	A	10-20	20	41.74	Well Abandoned in 2014	
T-4B	B1	31.5-41.5	42	40.98	8260B	
T-5B	B1	34.5-44.5	45	41.95	8260B	
T-6A	A	10-20	20	39.92	-	
T-7A	A	8-20	20	41.84	8260B	
T-7B	B1	34-41	41	41.75	8260B	
T-8A	A	8-19	19	40.48	8260B	
T-8B	B1	24-36	36	40.43	8260B	
T-8D	B4	90-102	102	38.83	Sampling Suspended in 2002	
T-9A	A	7-19	19	39.3	8260B	
T-9B	B1	28-37	37	31.56	8260B	
T-9C	B3	55-65	65	38.82	8260B	
T-10B	B1	23-32	32	40.13	8260B	
T-10D	B2	49-59	60	39.46	8260B	
T-11C	B2	46-56	56	38.78	8260B	
T-12C	B2	45.5-55.5	56	40.84	8260B	
T-13A	A	10-20	20	40.99	8260B	
T-14A	A	10-20	20	40.81	8260B	
T-15A	A	10-20	20	40.22	8260B	
T-16A	A	10-20	20	40.12	8260B	
T-17A	A	10-20	20	40.88	8260B	
T-17B	B1	25-35	35	40.72	8260B	
T-17B	A	12-22	22	41.20	8260B	
T-18B	B1	41-46	46	41.41	8260B	
T-19A	A	10-20	22	41.00	8260B	
T-19A	B1	29-39	39	41.38	8260B	
T-20A	A	7-17	20	40.86	8260B	
T-20A	B1	22-27	27	40.65	8260B	
T-21A	 	10-20			8260B	
T-21A	B1	22-27	20 27	41.20 41.53	8260B	
T-21B	A	10-20	20	41.55 NS	8260B	
T-22A	B1	24-25	25	39.13	8260B	
T-23A	A	24-25 10-20	20	41.44	8260B	
T-23B	B1	27-30	30	39.28	8260B	
T-23B		10-20	20	41.29	8260B	
	A D1				8260B 8260B	
T-24B	B1	33-36	36	39.19		
T-25A	A B1	10-20 25-27	20 27	40.26	8260B 8260B	
T-258s	↓			39.12		
T-25Bd	B1	33-36	36 46	38.79	8260B	
36S	A	10-16	16	41.44	+	
36D	A	15-20	20	41.26	<u>+</u>	
36DD	B2	51.5-61.5	61.5	41.52	+	
37S	A	9-15	15	42.01	+ 9260D	
38S	Α	9-15	15	41.13	8260B	

Notes:

MSL = mean sea level

NS = not surveyed

U.S. EPA = United States Environmental Protection Agency

Top of casing elevations presented in NAVD88 (North American Vertical Datum 1988).

Wells shown in green were installed in December 2018.

Eductor screen interval and total depth revised based on September 2010 well videolog Top of casing elevation for Well T-10C resurveyed in 2015 after completion of well repairs.

^{+ =} Sample collected and analyzed by AMD.

^{*} Most wells were resurveyed January 15, 2018.

Table 2 Water-Level Elevation Measurements - October 2018 Former TRW Microwave Site 825 Stewart Drive, Sunnyvale, California

				Updated Top of Casing	Updated Water-Level						
Well		Date	Depth to Water	Elevation*	Elevation						
Number	Zone	Measured	(feet, BTOC)	(feet, MSL NAVD88)	(feet, MSL NAVD88)						
T-1A	A	Destroyed (leet, BTOC) (leet, MSL NAVDoo) (leet, MSL NAVDoo)									
T-2A	A	Destroyed									
T-3A	A	Destroyed									
T-6A	A	NM 39.92									
T-7A	A	10/8/2018	6.36	41.84	 35.48						
T-8A	A	10/8/2018	6.21	40.48	34.27						
T-9A	A	10/8/2018	6.33	39.30	32.97						
T-13A	A	10/8/2018	4	40.99							
T-14A			6.40 6.34	40.81	34.59						
	A	10/8/2018			34.47						
T-15A	A	10/8/2018	6.14	40.22	34.08						
T-16A	A	10/8/2018	6.23	40.12	33.89						
T-17A	A	10/8/2018	6.64	40.88	34.24 34.26						
T-18A	Α		10/8/2018 6.94 41.20								
T-19A	Α	10/8/2018	6.61	41.00	34.39						
T-20A	Α	10/8/2018	6.43	40.86	34.43						
T-21A	Α	10/8/2018	6.73	41.20	34.47						
T-22A	A	10/8/2018	6.16	NS							
T-23A	A	10/8/2018	7.19	41.44	34.25						
T-24A	A	10/8/2018	7.09	41.29	34.20						
T-25A	Α	10/8/2018	5.82	40.26	34.44						
36S	Α	10/8/2018	5.92	41.44	35.52						
36D	Α	10/8/2018	5.71	41.26	35.55						
37S	Α	10/8/2018	6.10	42.01	35.91						
38S	Α	10/8/2018	7.35	41.13	33.78						
EDUCTOR	А			Destroyed							
T-1B	B1			Destroyed							
T-2B	B1			Destroyed							
T-4B	B1	10/8/2018	7.79	40.98	33.19						
T-5B	B1	10/8/2018	7.63	41.95	34.32						
T-7B	B1	10/8/2018	4.97	41.75	36.78						
T-8B	B1	10/8/2018	6.01	40.43	34.42						
T-9B	B1	10/8/2018	6.79	38.95	32.16						
T-10B	B1	10/8/2018	6.19	40.13	33.94						
T-17B	B1	10/8/2018	6.41	40.72	34.31						
T-18B	B1	10/8/2018	4.73	41.41	36.68						
T-19B	B1	10/8/2018	5.33	41.38	36.05						
T-20B	B1	10/8/2018	4.70	40.65	35.95						
T-21B	B1	10/8/2018	6.71	41.53	34.82						
T-22B	B1	10/8/2018	5.88	39.13	33.25						
T-23B	B1	10/8/2018	6.10	39.28	33.18						
T-24B	B1	10/8/2018	7.03	39.19	32.16						
T-25Bs	B1	12/14/2018	5.89	39.12	33.23						
T-25Bd	B1	12/14/2018	6.32	38.79	32.47						
T-2C	B2	Destroyed									
T-10C	B2	10/8/2018	7.21	39.46	32.25						
T-11C	B2	10/8/2018	5.88	38.78	32.90						
T-12C	B2	10/8/2018	5.19	40.84	35.65						
36DD	B2	10/8/2018	4.74	41.52	36.78						
T-9C	B3	10/8/2018	5.90	38.82	32.92						
T-8D	B4	10/8/2018	0.02	40.46	40.44						
***************************************			***************************************								

Notes:

BTOC - below top of casing

MSL - mean sea level

NS - not surveyed

NAVD88 - North American Vertical Datum 1988

NM - not measured

^{*} Most resurveyed on January 15, 2018.

Table 3 2018 Groundwater Volatile Organic Compound Results Former TRW Microwave Site 825 Stewart Drive, Sunnyvale, California

ſ	т		Т	DOE	TOF	-005	1D0E	VC	1 4 4 4 TOA	14 DOE	11004		1.0.000	14000	T CDN
Well	Zono	Sample Name	Sample Date	PCE	TCE (µg/L)	cDCE (µg/L)	tDCE	VC	1,1,1-TCA	1,1-DCE	1,1-DCA	Freon 113	1,2-DCB	1,4-DCB	CBN
T-1A	Zone A	Sample Name	Sample Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L) Destroyed	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
T-2A	A							Destroyed							
T-3A	A	Destroyed Destroyed													
T-7A	A	J6038-T7A-101018-1	10/10/2018	1.4	140	81	1.3	<0.50	<0.50	<0.50	<0.50	1.5	<0.50	<0.50	<0.50
T-7A Dup	A	J6038-T7A-101018-2	10/10/2018	1.5	150	82	1.3	<0.50	<0.50	<0.50	<0.50	1.6	<0.50	<0.50	<0.50
T-8A	A	J6038-T8A-100918	10/9/2018	0.67	75	85	1.3	2.9	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
T-9A	A	J6038-T9A-101018	10/10/2018	0.90	48	75	2.1	<0.50	<0.50	<0.50	<0.50	<0.50	2.3	<0.50	<0.50
T-13A	A	J6038-T13A-100918	10/9/2018	<0.50	29	85	2.5	28	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
T-14A	A	J6038-T14A-100918	10/9/2018	<0.50	21	65	2.3	25	<0.50	<0.50	<0.50	<0.50	2.0	<0.50	<0.50
T-15A	A	J6038-T15A-101018	10/10/2018	1.4	99	76	2.1	0.56	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<0.50
T-16A	A	J6038-T16A-100918	10/9/2018	1.3	69	71	2.2	1.5	<0.50	0.51	<0.50	<0.50	1.3	<0.50	<0.50
T-17A	A	J6038-T17A-100918	10/9/2018	0.86	69	7.3	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
T-18A	A		10/0/2010										-0.00	1 3,33	1 0.00
T-19A	A	Not sampled by AECOM - Not part of sampling and analysis plan J6038-T19A-100818 10/8/2018 < 0.50 < 0.50 11 2.1 26 < 0.50 < 0.50 < 0.50 1.1 < 0.50 < 0.50													
T-20A	A	Not sampled by AECOM - Not part of sampling and analysis plan													
T-21A	A		***************************************					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		***************************************			***************************************		
T-22A	A	Not sampled by AECOM - Not part of sampling and analysis plan Not sampled by AECOM - Not part of sampling and analysis plan													
T-23A	A	J6038-T23A-100918	10/9/2018	0.57	59	49	0.95	9.7	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
T-25A	A	J6038-T25A-100918	10/9/2018	1.1	51 F1	52	1.5	7.5	<0.50	<0.50	<0.50	<0.50	1.4	<0.50	<0.50
36S ⁽¹⁾	A		10/10/2018	1.5	59	9.4	<0.50	0.71	<0.50	<0.50	<0.50	<0.50	<0.50	-	-
36D ⁽¹⁾	A		10/10/2018	<0.50	6.1	13	0.57	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	_
37S ⁽¹⁾	A		10/10/2018	<0.5	33	4.6	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	_
38-S	A	J6038-38S-101018	10/10/2018	<0.50	39	63	<0.50	2.3	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Eductor	A							Destroyed							
T-1B	B1							Destroyed							
T-2B	B1	04400-04400-04400-04400-04400-04400-04400-04400-04400-04400-04400-04400-04400-04400-04400-04400-04400-04400-04						Destroyed							
T-4B	B1	J6038-T4B-100918	10/9/2018	<10	<10	700	<10	<10	<10	<10	<10	<10	<10	<10	<10
T-5B	B1	J6038-T5B-101118-1	10/11/2018	<25	1200	39	<25	<25	<25	<25	<25	120	<25	<25	<25
T-5B Dup	B1	J6038-T5B-101118-2	10/11/2018	<50	1200	<50	<50	<50	<50	<50	<50	140	<50	<50	<50
T-7B	B1	J6038-T7B-100918-1	10/9/2018	<0.50	54	2.4	< 0.50	<0.50	<0.50	<0.50	<0.50	1.0	<0.50	<0.50	<0.50
T-7B Dup	B1	J6038-T7B-100918-2	10/9/2018	<0.50	57	2.2	<0.50 *	<0.50	<0.50	<0.50 *	<0.50	0.91	<0.50	<0.50	<0.50
T-8B	B1	J6038-T8B-101018	10/10/2018	<10	18	460	<10	20	<10	<10	<10	<10	<10	<10	<10
T-9B	B1	J6038-T9B-101118	10/11/2018	<0.50	170	220	2.9	1.4 *	<0.50	1.7	0.64	<0.50	0.98	<0.50	<0.50
T-10B	B1	J6038-T10B-100918	10/9/2018	<0.50	2.8	15	1.2	5.3	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<0.50
T-17B	B1	J6038-T17B-101118	10/11/2018	<5.0	170	300	<5.0	<5.0	<5.0	<5.0	<5.0	7.4	<5.0	<5.0	<5.0
T-18B	B1	J6038-T18B-100818	10/8/2018	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
T-19B	B1	J6038-T19B-100918	10/9/2018	<0.50	57	1.3	<0.50 *	<0.50	< 0.50	<0.50	< 0.50	1.2	<0.50	<0.50	<0.50
T-20B	B1	J6038-T20B-101018	10/10/2018	<0.50	230	190	2.1	<0.50	<0.50	1.4	<0.50	2.1	<0.50	<0.50	<0.50
T-21B	B1	J6038-T21B-101018	10/10/2018	<5.0	430	310	<5.0	<5.0	<5.0	<5.0	<5.0	15	<5.0	<5.0	<5.0
T-22B	B1	J6038-T22B-101118	10/11/2018	1.3	79	120	3.1	0.69	<0.50	0.95	< 0.50	<0.50	2.1	<0.50	<0.50
T-23B	B1	J6038-T23B-101018	10/10/2018	1.7	95	140	3.0	0.61	<0.50	0.89	<0.50	<0.50	3.0	<0.50	<0.50
T-24B	B1	J6038-T24B-101118	10/11/2018	<0.50	48	100	1.1	3.9	<0.50	1.6	0.50	<0.50	<0.50	<0.50	<0.50
T-25Bs	B1	J6038-T25Bs-121418	12/14/2018	<5.0	350	270	6.6	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
T-25Bd	B1	J6038-T25Bd-121418	12/14/2018	8.2	450	77	<5.0	<5.0	<5.0	<5.0	<5.0	5.1	<5.0	<5.0	<5.0
T-2C	B2				***************************************			Destroyed		•		······································			-
T-10C	B2	J6038-T10C-101118	10/11/2018	<25	260	890	<25	38	<25	<25	<25	140	<25	<25	<25
T-11C	B2	J6038-T11C-100918	10/9/2018	<0.50	150	13	< 0.50	<0.50	<0.50	0.61	<0.50	<0.50	<0.50	<0.50	<0.50
T-12C	B2	J6038-T12C-100918	10/9/2018	<0.50	99	36	0.72	<0.50	<0.50	1.1	<0.50	1.1	<0.50	<0.50	<0.50
36DD ⁽¹⁾	B2														
T-9C (2)	В3	J6038-T9C-100918	10/9/2018	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
T-8D	B4				7	Not sampled by AE	COM - Water Boa	d approval to disc	ontinue sampling red	quirement for well	***************************************	การ์การการการการการการการการการการการการการก	***************************************	***************************************	***************************************
		The state of the s													

Notes:

(1) Groundwater analytical data provided by AMD.

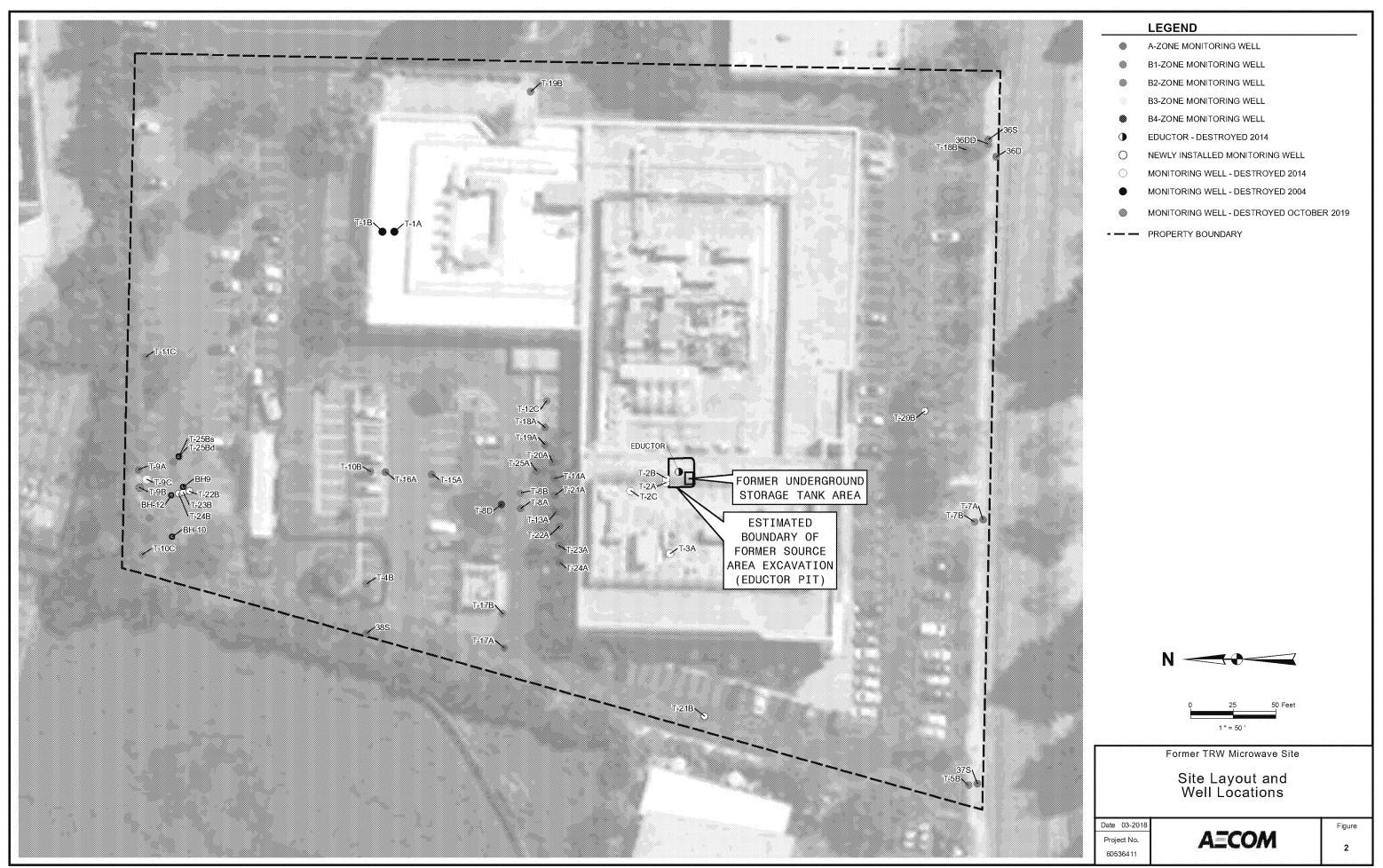
(2) Compared to the control of the con (2) This well has been redesignated as a Zone B3 well based on a detailed evaluation of the screen interval and lithology.

cDCE Not detected at or above the detection limit shown cis-1,2-Dichloroethene μg/L micrograms per liter
1,1,1-TCA 1,1,1-Trichloroethane
1,1-DCA 1,1-Dichloroethane Duplicate sample Dup Estimated concentration. Compound detected between the detection limit and the reporting limit. PCE Tetrachloroethene 1,1-DCE 1,1-Dichloroethene tDCE trans-1,2-Dichloroethene TCE 1,2-DCB 1,2-Dichlorobenzene Trichloroethene 1,4-DCB 1,4-Dichlorobenzene Freon 113 Trifluorotrichloroethane

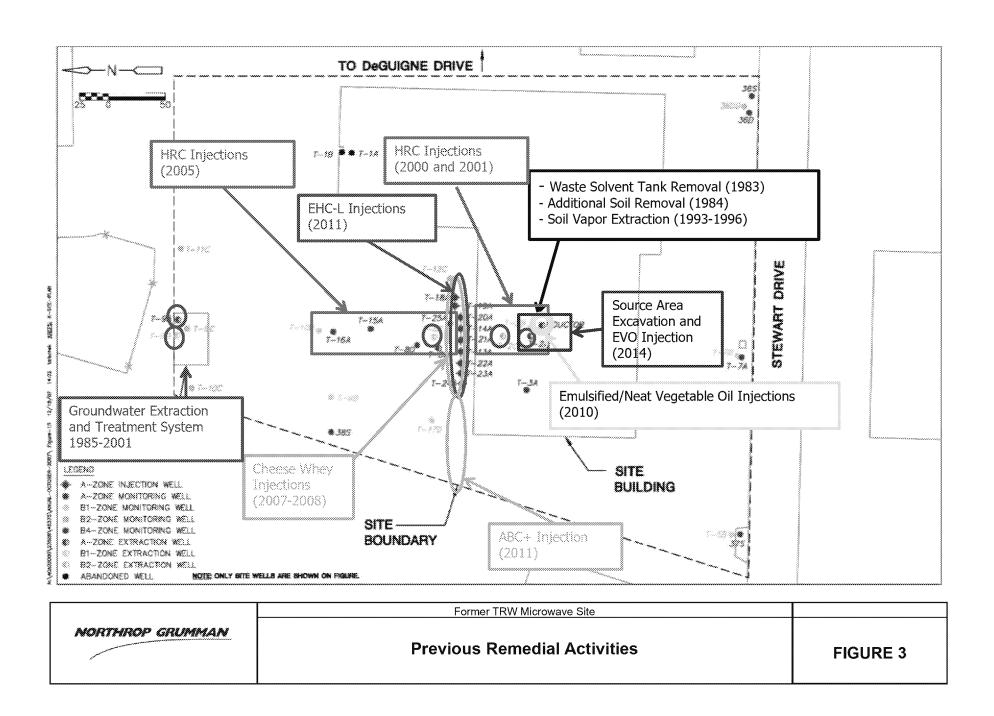
Former TRW Microwave Site Page 3 of 4

Table 4
2018 Groundwater General Environmental Parameter Results
Former TRW Microwave Site
825 Stewart Drive, Sunnyvale, California

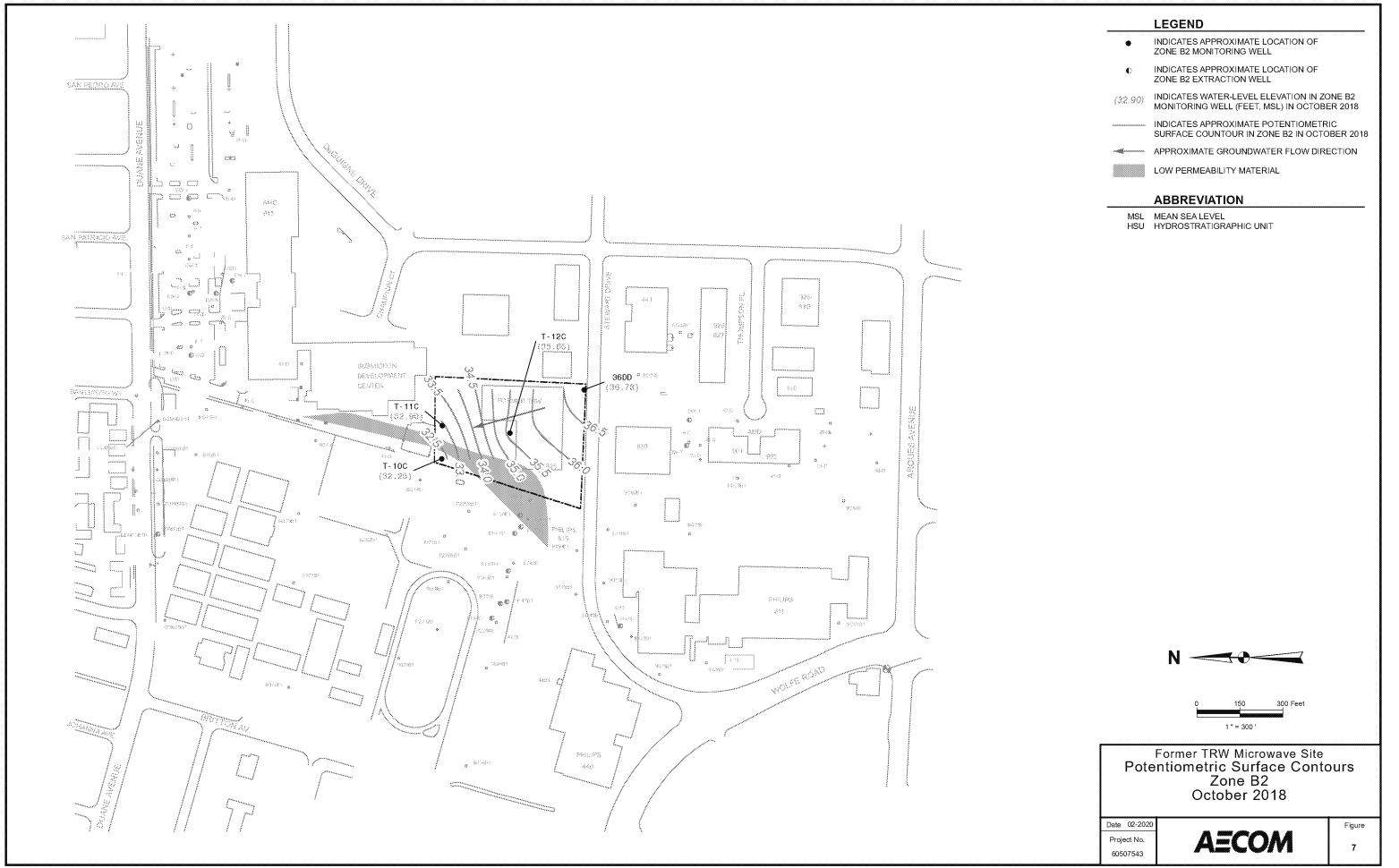
						Oxidation-Reduction	Dissolved
		Temperature	рН	Conductivity	_		Oxygen
Well	Date	(°C)	(SU)	(µS/cm)	(NTU)	(mV)	(mg/L)
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	uifer Wells	yaaanaanaanaanaanaanaanaanaanaa		
T-7A	10/10/2018	25.2	7.06	1613	1	31.1	0.069
T-8A	10/9/2018	22.8	7.45	1288	6	-137.2	0.45
T-9A	10/10/2018	22.4	7.09	1344	2	39	0.88
T-13A	10/9/2018	21.2	7.39	1278	4	-131.8	0.37
T-14A	10/9/2018	20.9	7.33	1319	7	-213.6	0.52
T-15A	10/10/2018	20.5	7	1339	1	47.9	0.87
T-16A	10/9/2018	25.2	7.31	1343	9	-132.6	0.37
T-17A	10/9/2018	24.7	7.36	1106	5	-103.8	1.81
T-19A	10/8/2018	23.5	7.11	1317	21	-128.1	0.88
T-23A	10/9/2018	20.2	7.26	1406	12	-109.8	0.75
T-25A	10/9/2018	23.5	7.31	1351	5	-125.4	0.51
38-S	10/10/2018	21.2	7.08	1441	2	61.9	1.08
		Zo	ne B1 A	quifer Wells			
T-2B				Destro	oyed		
T-4B	10/9/2018	23.5	7.41	1334	1.14	-70	1.19
T-5B	10/11/2018	23.6	7.41	1143	1	5.9	0.61
T-7B	10/9/2018	23.5	7.79	940	1	94.9	3.46
T-8B	10/10/2018	22.4	7.21	1389	6	-81.6	0.69
T-9B	10/11/2018	22.8	7.27	1402	4	9	0.67
T-10B	10/9/2018	22.1	7.43	1068	6	-79.8	2.48
T-17B	10/11/2018	21.6	7.29	1260	5	-43.3	0.57
T-18B	10/8/2018	23.3	7.64	853	3	-98.4	2.04
T-19B	10/9/2018	19.4	7.3	1048	340	205.1	1.6
T-20B	10/10/2018	21.6	7.39	1390	3	67.5	2.66
T-21B	10/10/2018	22.4	7.31	1311	4	32.9	0.81
T-22B	10/11/2018	20.3	7.02	1391	1	75.8	0.81
T-23B	10/10/2018	22.6	7.1	1379	17	27	0.66
T-24B	10/11/2018	21.2	7.51	1319	1	9.8	0.48
		Zo	ne B2 A	quifer Wells		·	
T-2C	***************************************			Destro	yed	***************************************	***************************************
T-10C	10/11/2018	22.8	7.65	872	3	-135.8	0.47
T-11C	10/9/2018	23.7	7.82	942	3	101.6	4.15
T-12C	10/9/2018	21.9	7.61	700	5	57.9	0.79
		L		quifer Well		\$	
T-9C	10/9/2018	22.8	7.62	762	1	45.8	0.95

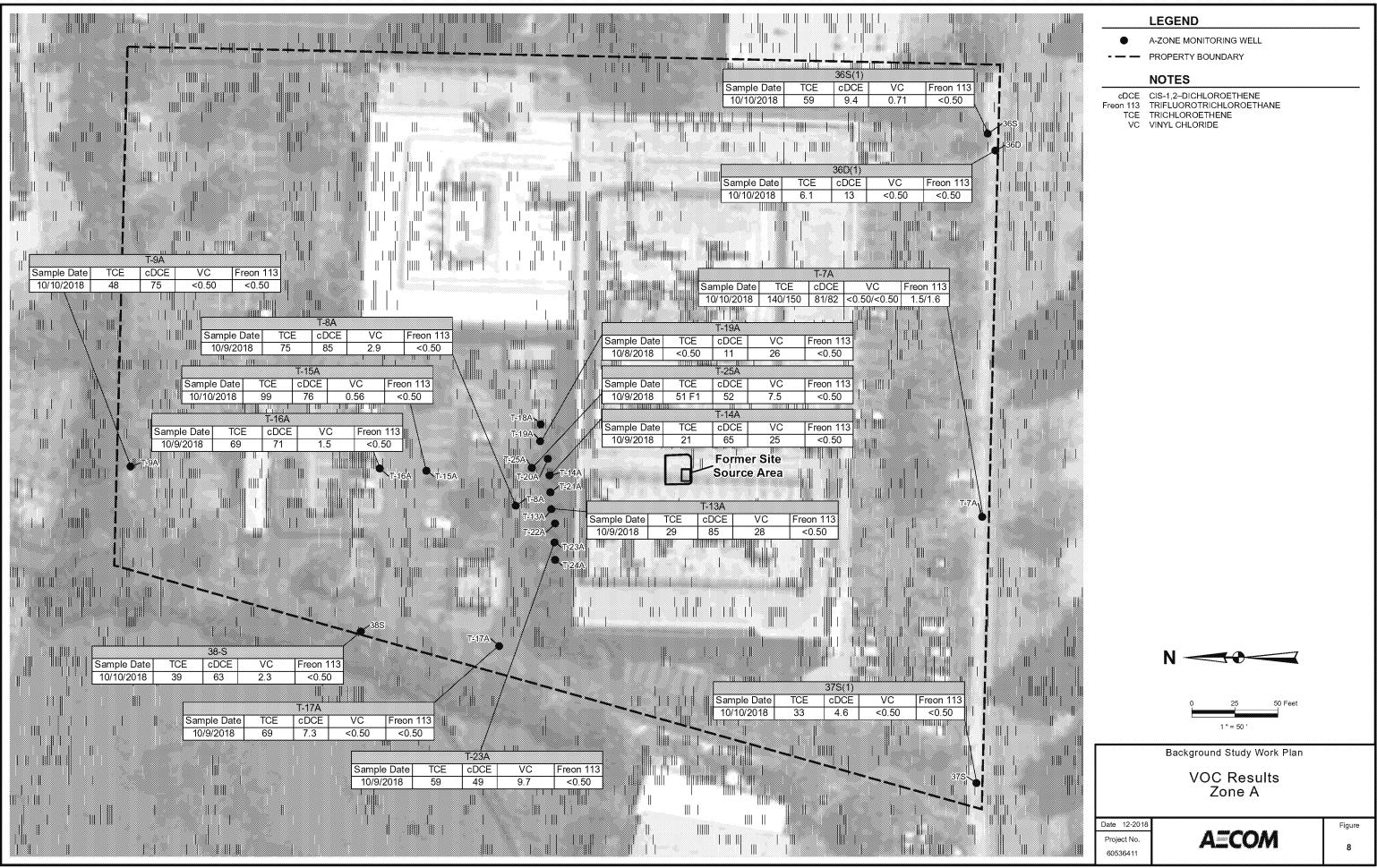

Notes:

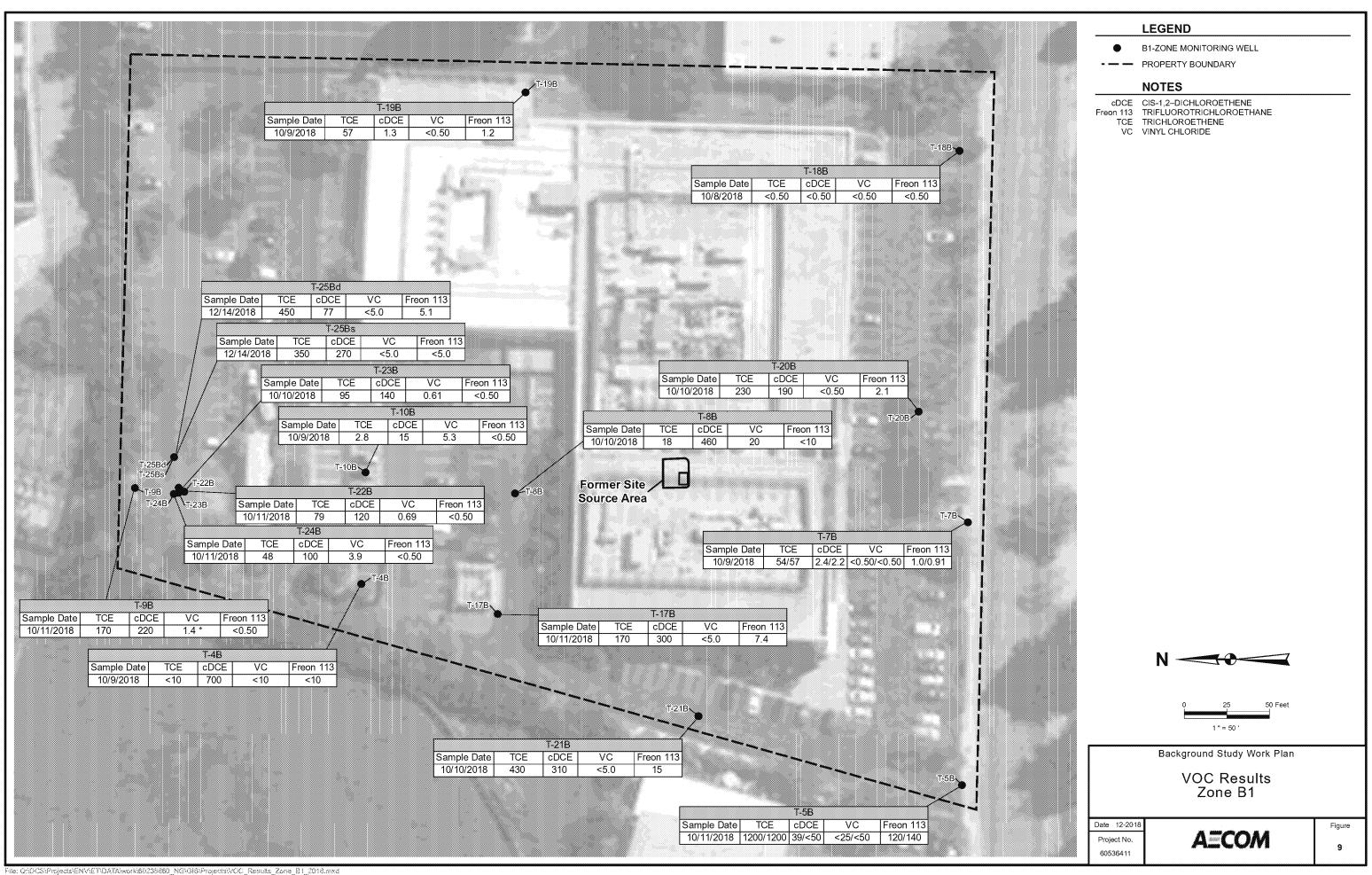
°C = degree Celsius
SU = standard units
μS/cm = micro Siemens per centimeter
NTU = Nephelometric Turbidity Unit
mV = millivolts
mg/L = milligram per liter
- = not analyzed/measured

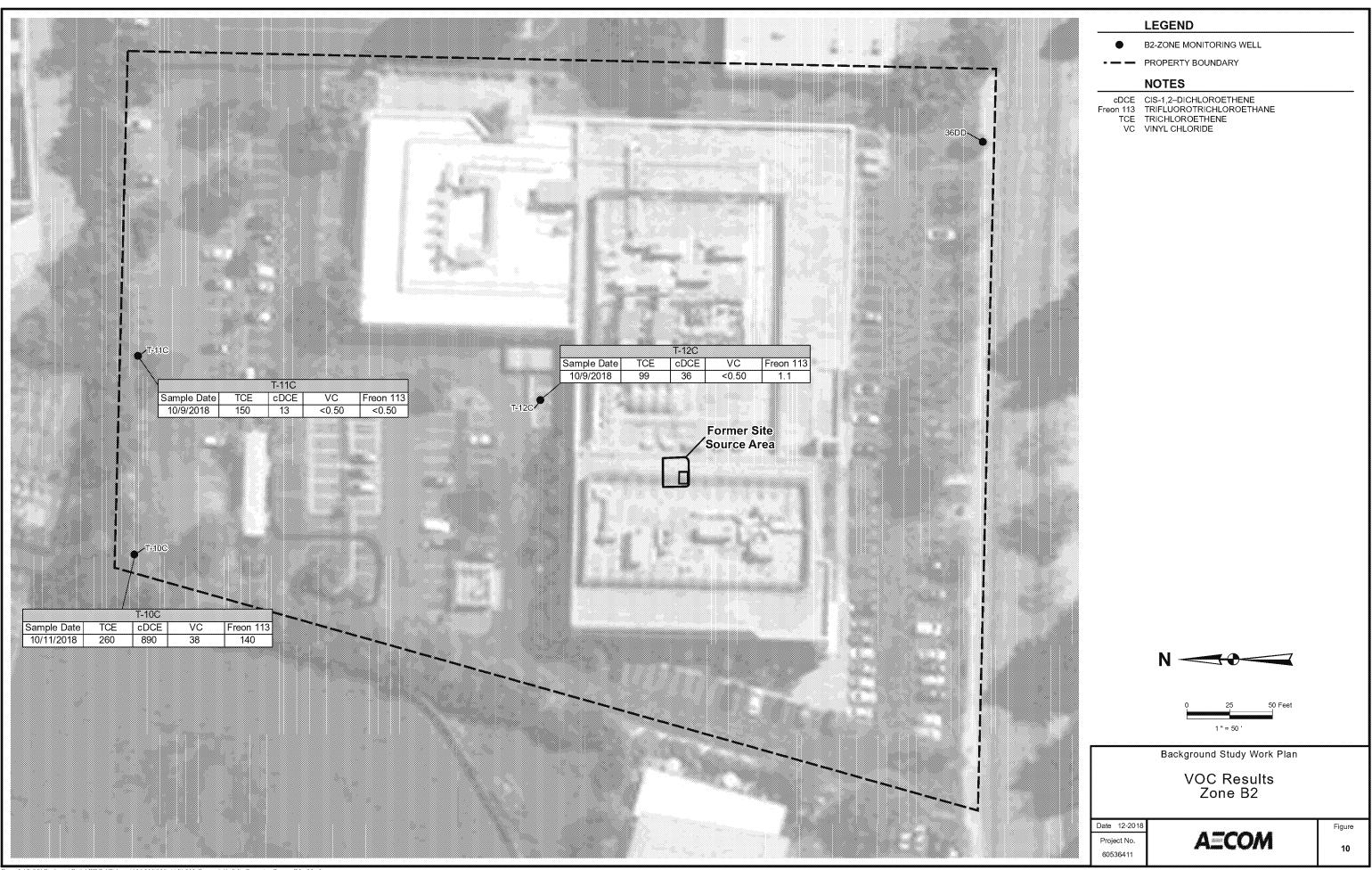

FIGURES

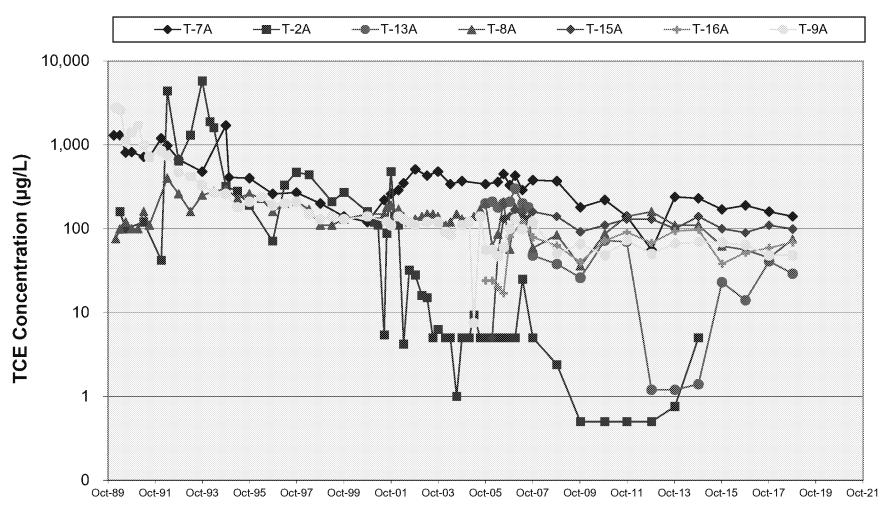
File: QADCS\Projects\ENV\ET\OATA\work\60236890_NG\GIS\Projects\Sile_Location.mxd Date: Finday, March 03, 2017. 3:08:23 PM


File: ChIDCS\Projects\ENV\ET\DATA\work\\$0239860_NG\GIS\Projects\Sile_Layout_Well_Location_Ver_1.mxd Date: Friday, December 6, 2019 | 11:43:23 AM








File: Q/DCS/Projects/ENV/ET/DATA/work/60238860_NG/GIS/Projects/VOC_Results_Zone_A_2018.mxd Date: Wednesday, December 26, 2018 | 11:09:02 AM

Date: Wednesday, December 26, 2018 11:10:08 AM

File: 0:ti0CStProjects\ENV/ET\DATA\work\60238860_NG\GIStProjects\VOC_Results_Zone_B2_2018.mxd Date: Wednesday, December 26, 2018 - 11:10:28 AM

NORTHROP GRUMMAN

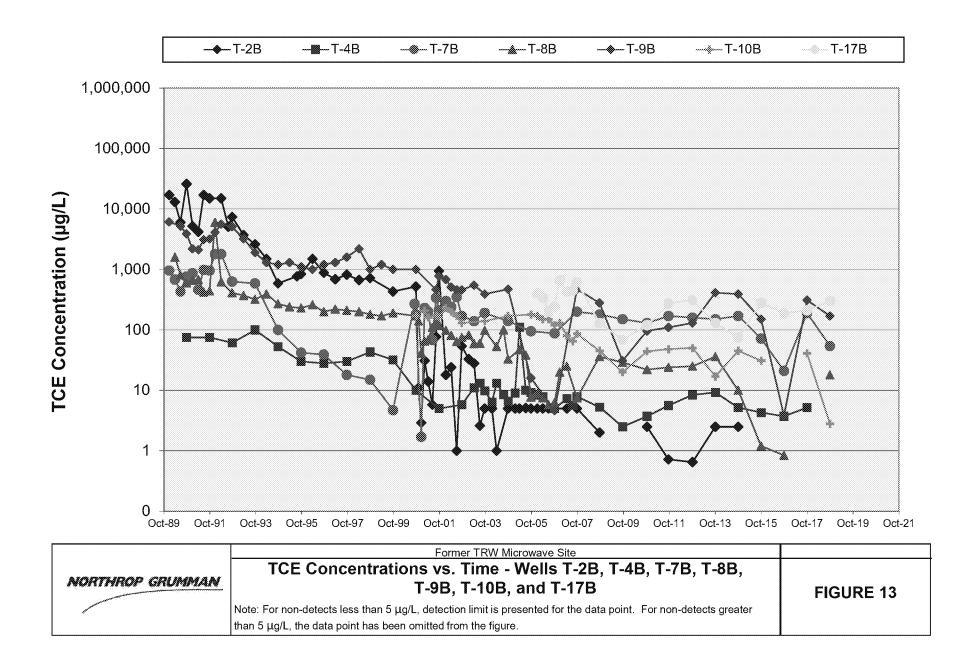
TCE Concentrations vs. Time - Wells T-2A, T-7A, T-8A,
T-9A, T-13A, T-15A, and T-16A

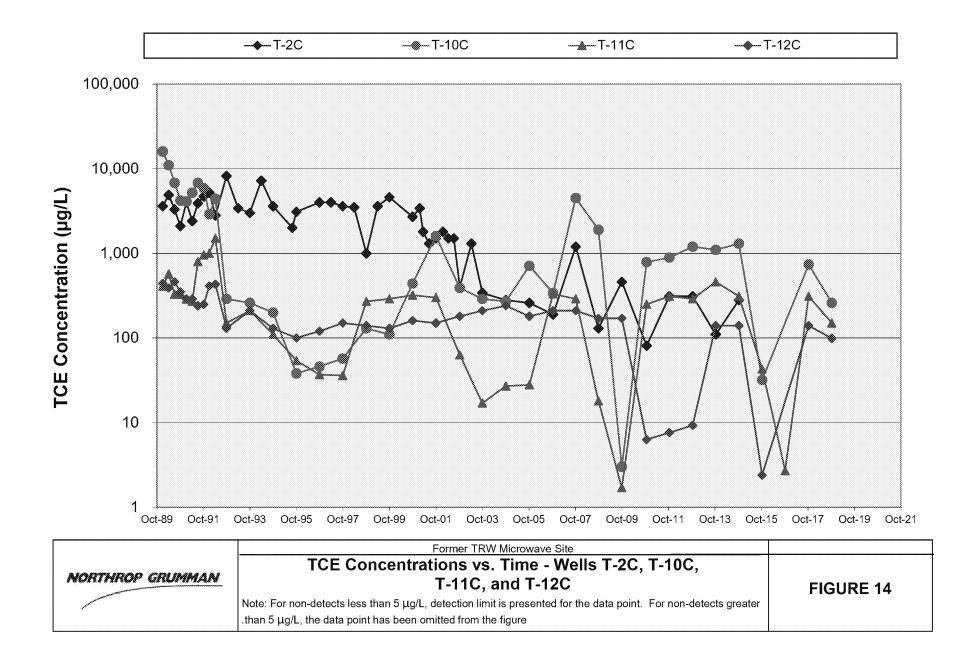
FIGURE

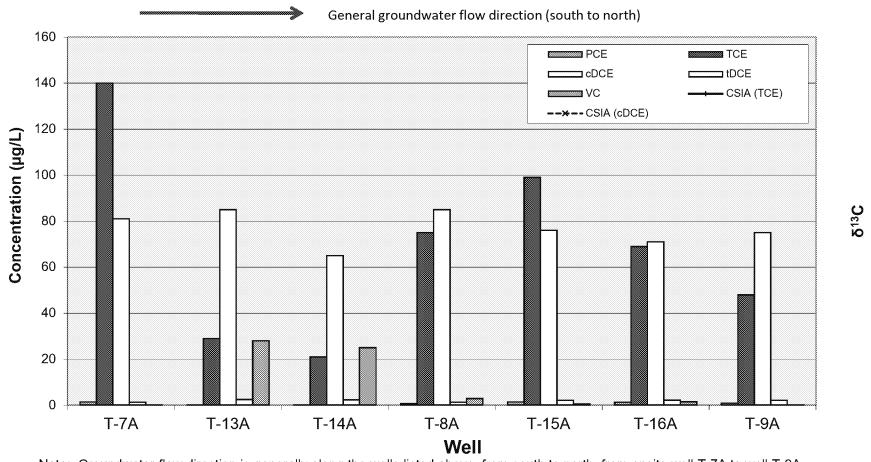
Note: For non-detects less than 5 μg/L, detection limit is presented for the data point. For non-detects greater than 5 μg/L, the data point has been omitted from the figure

FIGURE 11

than 5 µg/L, the data point has been omitted from the figure. Data reported as total 1,2-DCE prior to 1996.


Former TRW Microwave Site


CDCE Concentrations vs. Time - Wells T-2A, T-7A, T-8A,


T-9A, T-13A, T-15A, and T-16A

Note: For non-detects less than 5 μg/L, detection limit is presented for the data point. For non-detects greater

FIGURE 12

Note: Groundwater flow direction is generally along the wells listed above, from south to north, from onsite well T-7A to well T-9A.

	Former TRW Microwave Site	
NORTHROP GRUMMAN	Chlorinated Ethene Concentrations, Zone A - October 2018	FIGURE 15

APPENDICES

Appendix A Groundwater Low-Flow Sampling Logs

Project # 181008-D1 Date 10/8/18 Client **AECOM**

Site: TRW Microwave @ 825 Stewart Dr., Sunnyvale, CA Page: 1 OF 2

Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Point:	Notes
0841	4					5,71	20,12	тос	
0846	4					4.74	55.05	TOC	
1010	4					5,92	15,00	ТОС	
1001	4					6.10		тос	
1151	4					7.35	14,50	ТОС	***************************************
1255	4					7.79	39,22	тос	
1309	4					743	42,95	тос	
1738	4					6.36	18,73	тос	
1235	4					4,97	41,51	ТОС	
0909	4					6.21	15,49	TOC	
1225	4					-	35,14	TOC	
0802	Ч					0,62	100,46	TOC	
1204	4					6.33	18,24	тос	
1303	4				4	6,79	34,41	тос	***************************************
1037	4					5,90	63,56	ТОС	**************************************
0976	2					6,19	25114	тос	:
1313	4					7.21	57.35	тос	
1250	4					5,88	55.56	тос	
1240	2					5.19	55,02	тос	
1028	1					6.40	18.83	тос	
	0841 1010 1001 1151 1255 1309 1238 1235 0909 1225 0802 1204 1303 1037 1303 1037 0916 1313 1250 1240	Time Size (in.) 0841 4 0846 4 1010 4 1001 4 1151 4 1255 4 1309 4 1235 4 1225 4 1225 4 1204 4 1303 4 1303 4 1303 4 1303 4 1303 4 1250 4 1250 4 1250 4 1240 2	Time Size Sheen / Odor 084/	Time Size (in.) Sheen / Odor Immiscible Liquid (ft.) 0841 4	Time Well Size (in.) Odor Immiscible Liquid (ft.) Liquid (ft.) 0846	Time Size Sheen / Depth to Immiscible Immiscible Removed (ml)	New Size Sheen Depth to Immiscible Immiscible Removed (ml) New New	Time Size Sheen Odor Depth to Immiscibles Removed City City	Time Size Sheen Immiscible Immiscible Removed Remove

Project # 181008-D11 Date 10/8/18 Client **AECOM**

Site: TRW Microwave @ 825 Stewart Dr., Sunnyvale, CA Page: 2 OF 2

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
T-14A	6942	1					6,34	17,93	тос	
T-15A	1210	1					6.14	18,91	тос	
T-16A	1147	1		***			6 23	18,70	тос	
T-17A	1016	2	. <i>n</i> .				6.64	20,14	TOC	9.7 I
T-17B	1308	1					6.41	34,40	тос	
T-18A	0809	1					6,94	19.76	TOC	
T-18B	6819	2					4,73	46,26	тос	
T-19A	0875	1					6.61	20,84	тос	
T-19B	0832	2					5,33	39,34	TOC	
T-20A	67436	1					6.43	15,89	TOC	And the Annual Control of the Andrews
T-20B	1242	2					4,70	27.04	TOC	
T-21A	0951	1					6.73	17,84	TOC	
T-21B	1247	2					6.71	27,34	тос	
T-22A	0853	1					6.16	18.13	тос	
T-22B	1254	2				Control of the Contro	5.88	24,43	тос	
T-23A	0859	1					7.09	18,00	тос	
T-23B	1257	2					5188	29.08	тос	
T-24A	0909	1					7,09	18,93	тос	
T-24B	1300	2					7.03	35,50	тос	
T-25A	1022	1					5,82	18,90	TOC	

PHOENIX

Former	TRW Microwave F	acility Octobe	er 2018 Water	Level Form
Sequence	Well	Water Level (feet bTOC)		Time
1	T-8DØ	0,02	10/8/8	Time OYUZ
2	T-18A	6.94	10/0//3	0809
3	T-18B	4.73	 	0819
4	T-19A	6.61		0825
5	T-19B	5.33		0832
6	36D	5,71		0841
7	36DD	4.74	 	0846
8	T-22A	6.16	I	0853
9	T-23A	7.19		0854
10	T-24A	7.09	 	0904
11	T-8A	6.21		0909
12	T-10B	6.19		0926
13	T-20A	6.43		0930
14	T-14A	6.34		0942
15	T-21A	6.73		0951
16	37S	6.10		1001
17	368	6.64		1016
18	T-17A	5,82		1072
19	T-25A	6.40		1028
20	T-13A	5,90		1037
21	T-9C	6.23		1147
22	T-16A	7.35		1151
23	38\$	6.33		1204
24	T-9A	6.14		1210
25	T-15A	6.01		1225
26	T-8B	4,97		1235
27	T-7B	5,19		1240
28	T-12C	6,36		1238
29	T-7A	5,88		1250
30	T-11C	7.79		1255
31	T-4B	4.70		1242
32	T-20B	6,71		1247
33	T-21B	5.88		1254
34	T-22B	6.10		1257
35	T-23B	7.03		1300
36	T-24B	6.70		1300
37	T-9B	6.79		1303
38	T-17B	6.41		1308
39	T-5B	7,63		1369
40	T-10C	7.21	Į į	1313

Project #: 181068 - D L 1	Client: AECOM @ TRW Microwave - Sunnyvale, CA
Sampler: DL	Start Date: 16/10/18
Well I.D.: 385	Well Diameter: 2 3 4 6 8
Total Well Depth: 14,50	Depth to Water Pre: 7.35 Post: 7.46
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVC	Flow Cell Type: YSI Pa Plus

Purge Metho Sampling Me			Peristaltic Pump Bladder Pump Other: New Tubing Other:									
Start Purge:		-	O	260 mll.			Pump Depth:	121				
Time	Temp.	рН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations				
6736	20,3	700	1513	3	2,84	108.4	Goo	7.39				
6739	20.6	7,61	1514	4.	2,52	95.3	1700	7.42				
0742	20,7	7.01	1569	2	2.18	84.4	1800	7.48				
0745	20,9	7,03	1490	7	1,80	74.7	2400	7.45				
0748	71.0	7,04	1479	4	1,56	70.6	3000	7.45				
051	21.0	7,65	1458	7	1,31	67,3	3600	7,45				
0754	21.0	7,66	1451	7	1,70	65,4	4200	7.46				
0757	21.0	7,67	1449	Z	1.77	64,1	4800	7.46				
0800	21.1	7,08	1444	7	1,09	63,0	5400	7.46				
0803	21,2	7.08	1441	7	1,08	61.9	6000	7.46				
Did well d	lewater?	Yes	(6)		Amount	actually	evacuated: 6	000 ml				
Sampling '	Time: (0805			Sampling	g Date: //	57/01/8					
Sample I.I) .:	J6038- 3	38 S -101018	8	Laborato	ry:	Test America	a - SF				
Analyzed 1	for:	H	VOC's (826	50B)								
Blank I.D.	: 14-J6038-	-101018	@ G	715	Duplicate	e I.D.:		@ Time				

BLAINE TECH SERVICES, INC.

Analyzed for:

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

www.blainetech.com

HVOC's (8260B)

		LOW I	LOW WE	LL MOM	MIMOL	JUALA	SHEEL	
Project #	: 1900	9-DU		Client:	AECOM	I @ TRW	Microwave -	Sunnyvale, CA
Sampler:	DL			Start Date	e: 10/9,	1/8		
Well I.D.	:: T-4	B		Well Dia		***************************************	<u>4</u> 6 8	
Total We	ell Depth:	39,22		Depth to	Water	Pre: 7	79 Post:	
Depth to			Andrew Control of the	Thickness	***************************************	***************************************		
Reference		PVC		Flow Cell			PO Plus	
Purge Metho	od:	Peristalt	ic Pump Bla	adder Pump	Other	•		
Sampling M	fethod:	New Tul	_ (Other	-		_
Start Purge:			Flow Rate:	200 m		-	Pump Depth:	36"
Time	Temp.	рН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
1420	23,1	7,37		3	2,22	-35,9		7,82
1423	23,9	7,40	1304	2	1,96	- 50,0	1200	7,85
1426	23.6	7.40	1328	1	1.90	-51,8	1820	7,88
1429	23.5	7,40	1330)	1.61	-57.4	2400	7,90
1431	23,5	7,41	1333	Ì	1,52	- 63,6	3660	7.91
1434	73,5	7.41	1334	1	1,39	-65.9	3600	7.92
1437	23,6	7,41	1336		1,25	-6616	42 0 00000	7,92
1440	23,4	7,41	1336	1	1,21	-68.1	4800	7.92
1443	23,5	7.41	1334	(1.19	- 70,0	5400	7.92
Did well d	lewater?	Yes]	M)		Amount	actually	evacuated: 5	<i>400</i> ml
Sampling	Time:	1445			Sampling	g Date: /	014/18	
Sample I.I	D.:	J6038-	T4B-10691	8	Laborato	ry:	Test America	a - SF
Analyzed	for:	H	VOC's (826	60B)				
Blank I.D.	•		@ Time		Duplicate I.D.:			
Analyzed	for:	H	VOC's (826	60B)				***************************************

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

		LOW F	LOW WE	LL MONI	TORING	G DATA	SHEET			
Project #	: 181008	1-DL1		Client:	AECOM	I @ TRW	Microwave -	Sunnyvale, CA		
Sampler:	m	·		Start Date	e: [0//	1/18				
Well I.D.	: T-5B)		Well Dia	meter: 2	2 3	4 6 8			
Total We	ll Depth:	42.95		Depth to	Depth to Water Pre: 7,63 Post: 7,63					
Depth to	Free Pro	duct:		Thickness of Free Product (feet):						
Reference	ed to:	PVC	and the second s	Flow Cell Type: YSI Proplus						
Purge Metho	od:	Peristalt	ic Pump Bla	odder Pump Other:						
Sampling M	lethod:	New Tul	oing		Other			-		
Start Purge:	1238	_	Flow Rate:	200 m	Umn	***	Pump Depth:	39.5		
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations		
1241	23,6	7,44	1077	l	3,12	66.0	600	7.63		
1244	23.4	7.42	1175	l	1,64	52.5	1700	7,63		
1247	23,2	7.42	1137	İ	1,25	40,4	1800	7,63		
1250	23,6	7,42	1139	1	1,60	29,5	2400	7.63		
1253	24,0	7.42	1140	l	0,88	24,2	3000	7,63		
1256	24,0	7,42	1143	i	0,80	20,8	3600	7.63		
1259	24,0	7,41	1147	-	0,72	15,4	4200	7,63		
1307	23.9	7,42	1143	1	0,61	9,5	4800	7.63		
1305	23,8	7,41	1143	1	0,60	7,8	5400	7,63		
1308	23,6	7,41	1143	(0,61	5,9	6000	7.63		
Did well d	lewater?	Yes (No)		Amount a	actually	evacuated: 6	000 ml		
Sampling	Time: 1	310			Sampling	Date:	10/11//8			
Sample I.I	D.:	J6038-	T5B-101							
Analyzed		Н	OC's (826	60B)						
Blank I.D.	:		@		Duplicate					
The state of the s		·	Time	***************************************	J 6038.	16B-10	51118-2	@ 1315		
Analyzed	for:	HV	OC's (826	(0B)						

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

***************************************		LOW F	LOW WE	LL MONI	TORING	G DATA	SHEET			
Project #	: 181008-	-DL1		Client:	AECON	1 @ TRV	V Microwave -	Sunnyvale, CA		
Sampler:	DL			Start Date	e: <i>10//</i>	01/8				
Well I.D.	:T-7A			Well Dia	meter:	2 3	4 6 8			
Total We	ll Depth:	18,73		Depth to	Water	Pre: 6	36 Post	:6,40		
Depth to	Free Proc	duct:		Thickness	Thickness of Free Product (feet):					
Reference	ed to:	PVC		Flow Cell	l Type:	YS:	I Pro Plas			
Purge Metho	od:	Peristalt	tic Pump Bla	adder Pump	Other	:				
Sampling M	lethod:	New Tul	bing		Other			•••		
Start Purge:	1129		Flow Rate:	200 ml/	'mm		Pump Depth:	141		
Time	Temp.	рН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations		
1132	24,5	7.06	1662		2,30	73,5	600	6,39		
1135	23,9	7,66	1602	1	1,57	61,8	1200	6.39		
1/38	24.6	7,06	1600		1,24	55,1	1860	6,40		
1141	24.7	7.06	1609		1.10	49,0	240	6,40		
1144	24,4	7,06	1611	•	0,90	44.8	3666	6-40		
1147	2511	7,06	1611	l	0,84	38,3	360V	6,40		
1150	25,2	7,66	1613	1	0.70	34.4	4200	6.40		
1163	2511	7,06	1613	Ì	0,68	33,0	4800	6.40		
1/56	25,2	7.06	1613	1	6.69	31,1	5400	6.40		

Did well d	lewater?	Yes ((Vo)		Amount	actually	evacuated:	5400 ml		
Sampling '	Time:	1200			Sampling	g Date:	107/01/8			
Sample I.I).:	J6038- 1	TA-6101	8-1	Laborato		Test America	ı - SF		
Analyzed 1	for:		OC's (826				ом на при на			
Blank I.D.	•		@		Duplicate			<i>(</i> a)		
			Time	M-Fe-F	3603	38-TFA	-10/0/8-2	@ Time 1205		
Analyzed f	for:	\mathbf{H}	OC's (826	(0B)			3,100			

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

				ELLOWILLE CHES	I I OILII I	JUALA	X CHILLIAN I			
Project #	: 181008	1-DU1		Client:	AECOM	1 @ TRV	W Microwave -	Sunnyvale, CA		
Sampler:	DL			Start Dat	e: 10/9	118				
Well I.D.	:T-7B			Well Dia	meter: 2	2 3	<u> 4 6 8</u>	MENTAL DESCRIPTION OF THE PROPERTY OF THE PROP		
Total We	ell Depth:	41.51		Depth to	Depth to Water Pre: 4,97 Post: 5,1/					
Depth to	Free Prod	duct:		Thicknes	Thickness of Free Product (feet):					
Referenc	ed to:	PVC			Flow Cell Type: YSI 900 Plu 5					
Purge Meth Sampling M		Peristali New Tu	tic Pump Bi	adder Pump	Other Other	·		_		
Start Purge:	1057		Flow Rate:	700 mc	IMM		Pump Depth:	381		
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations		
1100	23,1	7.86	923	3	4,37	965	600	94.5,02		
1103	23,3	7,82	933	2	3,92	96.9	1700	5,07		
1106	23,5	7,81	936	1	3,77	97,2	1800	5,10		
1109	23,4	7.80	940	1	3,69	96.7	2400	5,10		
1/17	23,4	7.80	940	-	3,50	95,9	3000	5,10		
1175	23,5	7,79	9 39	l	3,48	95,3	3600	5,10		
1118	23,5	7,79	940	-	3,46	94,9	4200	5111		
	% -					and the second s				
Did well d	lewater?	Yes (No		Amount	actually	evacuated:	42 <i>00</i> ml		
Sampling	Time:	120			Sampling	, Date:	10/4//8			
Sample I.I		J6038-T	73-100918-	1	Laborato	ry:	Test America - SF			
Analyzed		H	/OC's (826			·	PU-1.5.100			
3lank I.D.	•		@ Time		Duplicate	e I.D.: J60	38-T7B-10418-	@ 1125 Time		
Analyzed 1	for:	Н	/OC's (826	60B)						

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

LOW	${f LOW}$	WELL	MONITO	DRING	DATA	SHEET
-----	-----------	------	--------	-------	------	-------

		2011	LOW WILL	MAI IVACOLVA	LUMIN	J JJZX X ZX						
Project #	: 1888	1808h	502-1	Client:	Client: AECOM @ TRW Microwave - Sunnyvale, CA							
Sampler:	Ks	***************************************		Start Date	Start Date: 10-8-18							
Well I.D.	: T-8	S A		Well Diameter: 2 3 (4) 6 8								
Total We	ell Depth:	15491		Depth to	Depth to Water Pre: 6.05 Post: 6.07							
Depth to	Free Pro	duct: -		Thickness	s of Free	Product	(feet): -		nennenne er jaken i samisir se esta			
Referenc	ed to:	PVC		Flow Cel	l Type:	YSI	556		79 W. C. S. C. Askansansansansansansansansansansansansansa			
Purge Meth	od:	Peristal	tic Pump\Bl	adder Pumr	Other			***************************************				
Sampling M		New Tu			Other	***********		110				
Start Purge:	0939			200 m	######################################		Pump Depth:		5			
Time	Temp.	рН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	1	TW /			
0940	22.9	7.31	1272		2.06	-64.8	200	6.05/	l Clear			
0943	22.9	7.30	1268	a management of the second	0.76	-87.7	800	6.05	1			
0946	22.9	7.32	1270	8	0.64	-101.4	14,00	6.05				
0949	229	7,34	1272	8	0.61	-108.5	2000	6.07				
0952	22.9	7.30	1273	6	0.57	-110.5	2600	6.07	- Constanting			
0955	23.0	7.48	1276	6	0.54	-/32.3	3200	6.07				
0958	22.9	7.46	1282	6	0.50	-129.6		6.07				
1001	22.8	7.45	1288	6	0.45	-137.2		6.01				
								! !				

Did well c	lewater?	Yes (No)		Amount	actually	evacuated: 4	1400	ml			
Sampling	Time:	1005			Sampling	g Date:	1969/18					
Sample I.D.: J6038-T8A-1009			18	Laborato	ry:	Test Americ:	a - SF					
Analyzed		H	VOC's (82	60B)		MANANTA FOOTET ATTA TANNON TO SOCIALIS COLONIA		****				
Blank I.D.:				Duplicate	e I.D.:		@					
Analyzed	for:	H	VOC's (820	60B)	······································			Time				
J			1000	, , , , , , , , , , , , , , , , , , ,								

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

***************************************		LOW F	LOW WE	LL MONI	ITORING	G DATA	SHEET			
Project #	: 18/008	s-Dl1		Client:	AECOM	I @ TRW	Microwave -	Sunnyvale, CA		
Sampler:	DC			Start Dat	Start Date: 10/16//S					
Well I.D.	: T-8	B		Well Diameter: 2 3 4 6 8						
Total We	ell Depth:	36,14		Depth to	Depth to Water Pre: 6,01 Post: 6,19					
Depth to	Free Prod	duct:		Thicknes	s of Free	Product	(feet):			
Reference	ed to:	PVC	****	Flow Cel	1 Type:	YSI	Pro Plus			
Purge Method: Peristaltic Pump Black Sampling Method: New Tubing					AMANA MINISTER MANAGEMENT AND	7	-			
Start Purge:	1030	nama .	Flow Rate:	ZOD MU,	lmin		Pump Depth:	28'		
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations		
1033	22.2	7,15	1385	3	2,36	-62.7	600	6,05		
1636	22.1	7,18	1384	5	21.80	-65,7	1200	6,09		
1639	22.4	7,19	1387	13	1,44	-69,7	1800	6.11		
1042	22.3	7,21	1386	15	1,17	-7144	2400	6,13		
1045	22.4	7,21	1390	13	1,05	-760	3600	6, 15		
1048	22,4	7,21	1388	7	0,91	- 77.4	3600	6.16		
1051	22,4	7,22	1389	8	0,84	-78,6	4200	6,17		
1654	22.4	7,22	1389	9	0.72	-79,2	48W	6,18		
1057	22,4	7,22	1391	7	0,70	-81,0	5460	6,19		
lloò	22.4	7.21	1389	6	0,69	-81,6	6000	6, 19		
Did well d	lewater?	Yes	(lo)		Amount a	actually	evacuated: (coo ml		
Sampling	Time:]/	05			Sampling	Date:	10/10/18	444		
Sample I.I	D.:	J6038-	18B-10101	8	Laborato	ry:	Test America	ı - SF		
Analyzed		H	VOC's (826	50B)						
Blank I.D.:					Duplicate I.D.: @ Time					
Analyzed 1	for:	H	/OC's (826	(0B)						

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

		LOWI	LOW WE	LL MON	TORING	G DATA	SHEET				
Project #	1:18100	8-DL1		Client:	Client: AECOM @ TRW Microwave - Sunnyvale, CA						
Sampler:	: DL			Start Dat	Start Date: 16/16/18						
Well I.D	: T-92	7			Well Diameter: 2 3 4 6 8						
Total We	ell Depth:	18,24		Depth to	Depth to Water Pre: 6,33 Post: 6.37						
Depth to	Free Pro	duct:		Thicknes	s of Free	Product	(feet):				
Referenced to: PVC				Flow Cel	l Type:	YSI	Pro P145				
Purge Method: Sampling Method: Start Purge: 6833 Peristaltic Pump New Tubing Flow Rate:		ACCOUNT OF THE PARTY OF THE PAR		Other Other		Pump Depth:	- 				
Time	Temp.	рН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations			
0836	20,8	7103	1258	2	2,55	81.8	600	6.35			
0834	21.0	7,03	1288	2	2,20	76.0	1200	636			
6842	21,1	7.04	1299	7	1,71	68,8	1800	6,36			
0845	21.7	7.05	1797	7	1.40	62,5	2400	6.36			
0848	22,0	7,07	1307	7	1,19	57.4	3000	6,36			
0851	21,9	7,08	1318	2	1.08	53.1	3600	636			
0854	72,0	7109	1326	Z	1.01	48,5	4200	6.37			
0857	22:1	7.09	1335	2	0,92	44,4	4800	6.37			
0960	22.3	7.09	1340	2	6,90	41.2	5400	6,37			
0403	22,4	7.09	1344	7	0,88	39,0	6000	6,37			
Did well d	lewater?	Yes	<u> </u>		Amount	actually of	evacuated: 6	ooo ml			
Sampling		905	**************************************		Sampling	g Date:	10/10/18	***************************************			
Sample I.I		J6038- 7	94 -10101	8	Laborato	ry:	Test America	ı - SF			
Analyzed:	***************************************	H/	OC's (826	······································	7	T					
Blank I.D.	•		@ Time		Duplicate	e I.D.:		@			
Analyzed i	for:	Н	OC's (826	(0B)			***************************************	Time			
			·····								

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

Project #: 181008- DL 1	Client: AECOM @ TRW Microwave - Sunnyvale, CA
Sampler: DL	Start Date: 10//1//8
Well I.D.: T-9B	Well Diameter: 2 3 4 6 8
Total Well Depth: 34,41	Depth to Water Pre: 6,79 Post: 6,79
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVC	Flow Cell Type: YSI Pro Plus

Referenced to:		PVC	***************************************	Flow Cell	I Type:	YSI	I ProPlus	
Purge Metho	od:	Peristalt	tic Pump Bla	adder Pump	Other:	•		_
Sampling Mo	ethod:	New Tul	bing		Other:			_
Start Purge:	1004	wa	Flow Rate:	<u> 2001</u>	m Umm	L	Pump Depth:	32,5
Time	Temp.	pН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
1007	22.0	8,33	576	5	2,44	45,6	600	6,79
10/6	21.6	8,37	495	4	2,13	36,1	1200	6.79
1013	21.5	8,37	495	2/	2,08	31,7	1800	6,79
1016	21.5	8,35	495	5	1,91	27.6	24a	6,79
1619	21,9	8,32	495	5	1,86	25,8	3000	6.79
1022	21,9	8,17	504	4	1,80	26.0	3600	6.79
1025	2210	7,95	517	5	1,77	28,5	4300	6.79
1028	22,2	7,50	638	5	1,60	36.7	4800	6,79
1031	22,2	7.31	932	5	1,40	39,6	5400	6.79
1034	22.4	7,28	1099	5	1,38	36,5	6000	6.79
Did well d	lewater?	Yes (1 160		Amount	actually	evacuated: (C	0870 ml
Sampling '	Time: [100			Sampling	g Date: /	10/11/18	
Sample I.D) .:	J6038-	T9B-1011	18	Laborato	ry:	Test America	a - SF
Analyzed 1	for:	H	VOC's (820	60B)				
Blank I.D.:			,	Duplicate I.D.:			@ Time	
Analyzed for: HVOC's (8				60B)	, market and the several market			

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

P	MONTH COMMENTS OF THE PROPERTY	LOW F	LOW WEI	LL MONI	TORING	G DATA	SHEET			
Project #:	:18/008	S-DC	/	Client:	AECON	1 @ TRW	/ Microwave - S	Sunnyvale, CA		
Sampler:	Dl			Start Date	e: 10//	1/18				
Well I.D.	:T-9B				Well Diameter: 2 3 4 6 8					
Total We	ll Depth:	34,41		Depth to	Water	Pre: 6	. 79 Post:	6,79		
Depth to	Free Proc	luct:		Thickness	Thickness of Free Product (feet):					
Reference	ed to:	PVC		Flow Cell	Type:	YSI	POPlas			
Purge Metho	od:	Peristalt	tic Pump Bla	adder Pump	Other					
Sampling Method: New Tubing			er/interesperantering	Other			•			
Start Purge:	1604	**	Flow Rate:	Zou ml	1/m.n		Pump Depth:	32,5		
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations		
1037	22,4	7,28	1160	4	1.26	34.0	6600	6.79		
1040	22,6	7,27	1235	4	1,10	29,7	7200	6.79		
1043	22,5	7,27	1302	4	0,98	2512	7800	6.79		
1046	22,4	7,27	1369	4	0,87	20.1	8400	6,79		
1049	22,6	7,27	1366	3	0,76	17.2	9000	6,79		
1051	22.7	7,28	1383	3	0,70	14,3	9600	6.79		
1054	22,7	7,28	1396	3	0,68	10,9	10200	6,79		
1057	22.8	7.27	1402	4	0.67	9.0	10800	6,79		
Did well d	lewater?	Yes (No)		Amount	actually	evacuated: /८	0800 ml		
Sampling '	Time: /	100			Sampling	g Date:	10////8			
Sample I.I	D.:	J6038-7	T9B-1011	18	Laboratory: Test America - SF					
Analyzed	for:	H	VOC's (826	50B)						
Blank I.D.	•				Duplicate	eID·		***************************************		

Analyzed for:

@

Time

HVOC's (8260B)

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

www.blainetech.com

Time

@

					TOTALL	<i>J AFT</i> X A T X	CEREE E				
Project #:	: 18100	8-DL	l	Client:	Client: AECOM @ TRW Microwave - Sunnyvale, CA						
Sampler:				Start Date	Start Date: 10/9//8						
Well I.D.	: T-91			I	Well Diameter: 2 3 4 6 8						
Total We	ll Depth:	63,51	6	Depth to	Water	Pre: 5	,90 Post	: 6,02			
Depth to	Free Prod	duct:		Thickness	s of Free	Product					
Reference	ed to:	PVC		Flow Cel	******************************		Pro Plus				
Purge Metho	od:	Peristalt	ic Pump Bla	dder Pump	Other	•					
Sampling M	ethod:	New Tul	bing		Other	•					
Start Purge:	0954		Flow Rate:	loom.			Pump Depth:	601			
Time	Temp.	рН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations			
1007	22.1	8,04	773	18	2,57	124.0	601	5,94			
1605	22,6	8103	763	7	1,86	89,4	1206	5,97			
1008	22.4	8,03	764	5	1,50	69,3	1800	5,99			
1011	22,4	8,02	765	6	1,27	60,0	2400	601			
HOT 1014	22,6	8,02	764	4	1.09	56.6	3000	6.01			
1017	2216	8102	763	2	1,00	53.1	3600	6.61			
1020	22.7	8,02	763	-	0,97	49,9	4200	6.02			
1023	25,8	8,07	762	4-14-14-14-14-14-14-14-14-14-14-14-14-14	0,95	45.8	4800	602			
***************************************					TO DAY OF THE STATE OF THE STAT						
Did well d	ewater?	Yes (No	****	Amount	actually	evacuated:	4800 ml			
Sampling 7		025	***************************************		Sampling	g Date: /	0/9/18				
Sample I.D		J6038- 1	T9C-1009	18	Laborato	ry:	Test America	a - SF			
Analyzed f		H	/OC's (826	0B)	***************************************						
Blank I.D.:					Duplicate	e I.D.:		@			
Time							-	Time			
Analyzed f	or:	HV	/OC's (826	0B)							

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

		LOW F	LOW WEI	LL MONI	TORING	G DATA	SHEET			
Project #	: 1808 	002160	1810080L-1	Client: AECOM @ TRW Microwave - Sunnyvale, CA						
Sampler:				Start Date	e: 10-6	9-18				
Well I.D.	: T-10	B		Well Diameter: ② 3 4 6 8						
Total We	ll Depth:	32.18	25.4	Depth to	Water	Pre: 6	20 Post:	: 6.2	9	
Depth to	Free Prod	duct:		Thickness	s of Free	Product ((feet):			
Reference	ed to:	PVC	,	Flow Cell	l Type:	YSI	55¢			
Purge Metho	od:	Peristalt	tic Pump Bla	ıdder Pump	Other	•				
Sampling M	ethod:	New Tul	bing		Other					
Start Purge:	1024		Flow Rate:	200m	L/min	_	Pump Depth:	2	7'	
Time	Temp.	pН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	ı	TW / rvations	
1025	22.1	7.44	1064	8	2.78	-75.8	200	6-20	Ckar	
1028	22.3	7.40	1066	8	2.76	-76.6	806	6.23		
1031	22.2	7.47	1068	8	2.75	-79.7	1400	6.25		
1034	22.1	7.41	1068	7	2.75	-74.2	2000	6,25	**************************************	
1037	22.2	7.36	1068	6	2.63	=71.7	2603	6.26	and the second s	
1040	22.1	7.54	1068	6	2.64	-86.7	3 zod	6.28	\downarrow	
1043	22.1	7.38	1068	6	2.53	-71.5	3800	6,29		
1046	22.1	7.40	1068	6	2.49	-75.6	4400	6.29		
1049	22.1	7.43	1068	6	2.48	- 79.8	5000	6,29		
Did well o	dewater?	Yes	(Vo)		Amount	actually	evacuated: 5	000	ml	
Sampling Time: 1050				Sampling	g Date:	10-9-18	ANALYSI OLOGOGI I KONNEDONI PANALIS GARAGO GARAGONI			
Sample I.l	D.:	J6038-	TIOB-100	918	Laborato	ry:	Test America - SF			
Analyzed	for:	H	VOC's (826	60B)		ad 4.0 parametar kirko di atau Aliyaanan ata saja ini ana atau 40.0 km, a				
Blank I.D.: @ Time				Duplicate I.D.: @ Time						
Analyzed for: HVOC's (826				60B)						

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

	for Viceland discrete Machine accommon parameters as	LOW F.	LOW WE	<u>LL MONI</u>	TORING	DATA	SHEET				
Project #:	18008	-D21		Client:	Client: AECOM @ TRW Microwave - Sunnyvale, CA						
Sampler:	Di			Start Date	e: 10//	1//8					
Well I.D.	: T - 10	·C		Well Dia	Well Diameter: 2 3 🖈 6 8						
Total We			5	Depth to	Water	Pre: 7	,2/ Post:	7.32			
Depth to	Free Proc	luct:		Thickness	s of Free l	Product ((feet):				
Reference	ed to:	PVC		Flow Cell	Type:	YSI	Pro Plus				
Purge Metho			ic Pump Bla		Other:	Maritimose Americanismos principoses conscionarios		-			
Sampling M	ethod:	New Tul	bing	~	Other:			- /11			
Start Purge:	1430		Flow Rate:		Umh	-	Pump Depth:	54'			
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observatio	ons		
1433	23,2	7.67	878	7	1,88	-94,3	600	7,26	ale		
1436	72,8	7,63	867	4	1,70	- 112,4	1200	7,29			
1439	22,8	7,67	864	4	0,94	-124,3	1806	7,31			
1442	22,8	7,67	864	4	0,84	-130,6	2900	7,31			
1445	22,7	7,61	866	3	0,74	- 136.3	3600	7,31			
1448	22,7	7,62	866	3	0,66	- 138,6	3600	7.31			
1451	22,9	7,62	866	3	0,60	-136,5	4200	7,32			
1454	22,7	7,63	870	3	0,36	-135,3	4800	7,32			
1457	22.8	7,64	870	3	0,48	- 137,0	5400	7,32			
1500	2218	7.65	872	3	0,47	-135,8	6000	7,32			
Did well d	lewater?	Yes (No		Amount	actually	evacuated: (000	ml		
Sampling	Time: 16	505			Sampling	g Date: 1	0/11/18				
Sample I.I	O.:	J6038-	T10C-101	178	Laborato	ry:	Test Americ	a - SF			
Analyzed	for:	\mathbf{H}	VOC's (82	60B) .							
Blank I.D. S6038											

Analyzed for:

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

HVOC's (8260B)

		LUW F.	LOW ME	LL MONI	TORING	DAIA	SHEET			
Project #	: 181008	-DLI		Client:	AECOM	I @ TRW	/ Microwave - S	Sunnyvale, CA		
Sampler:	DL			Start Date	e: 10/9	1/8				
Well I.D.	: T-11	<u>C</u>		Well Dia	Well Diameter: 2 3 (4) 6 8					
Total We	ll Depth:	55.56		Depth to	Depth to Water Pre: 5188 Post: 5,92					
Depth to	Free Prod	luct:		Thickness	s of Free	Product	(feet):			
Reference	ed to:	PVC		Flow Cell	l Type:	YSI	Pn 9145			
Purge Methors Sampling M		Peristalt New Tul	ic Pump Bla	adder Pump	Other:	***************************************		•		
Start Purge:			0	200 ml/		***************************************	Pump Depth:	51'		
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations		
1259	24,0	7,65	774	5	4,14	106,7	600	5,90		
1302	23,7	7,79	9/2	5	4,31	100.9	1200	5192		
1305	23,7	7,80	927	3	4.25	101.1	1800	5,92		
1308	23,8	7,81	934	3	4,20	161,3	2400	5,92		
1311	23,8	7,82	941	3	4,16	161,7	3000	5,92		
1314	23,7	7,82	942	3	4,15	101,6	3600	5.92		
НКС-1-V-V-0-11 Почет по муницу и подати по при	****									
Did well d	lewater?	Yes	No.		Amount a	actually	evacuated: 3	600 ml		
Sampling	Time: 13	15			Sampling	Date:	10/9//8			
Sample I.I	D.:	J6038-	T11C-100	918	Laborato	ry:	Test America	ı - SF		
Analyzed	····	H	VOC's (826	60B)						
Blank I.D.	•		@ Time		Duplicate I.D.:					
Analyzed	for:	H	/OC's (826	60B)	***************************************		***************************************			

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

		LUWR	LOW WE	LL MON	TOKING	J DATA	SHEET				
Project #	: 181008	-DC1		Client:	AECOM	1 @ TRV	V Microwave -	Sunnyvale, CA			
Sampler:	DL	***************************************		Start Date	e: <i>1019</i>	1/18					
Well I.D.	: T-12	C		Well Dia	meter: (2	D 3	4 6 8				
Total We	ell Depth:	55,62		Depth to	Depth to Water Pre: 5/19 Post: 5/29						
Depth to	Free Pro	duct:		Thickness	s of Free	Product	(feet):				
Referenc	ed to:	PVC		Flow Cel	l Type:	YS	1 Pro Plas				
Purge Meth	od:	Peristalt	tic Pump B):	adder Pump	Other	•					
Sampling M	lethod:	New Tu			Other	***************************************		_			
Start Purge:	1150		Flow Rate:	las mi,		***************************************	Pump Depth:	50			
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations			
1153	22.(8,98	282	13	2,46	50,0	600	5122			
1156	22.2	8,93	282	12	1.69	4810	1700	5,25			
1159	21,9	8,96	285	7	1,25	38,9	1800	5, 29			
1201	21,9	8,90	297	6	1.71	37.1	2400	5,30			
1204	21,9	8,81	313	6	1,00	37,0	3000	5,29			
1207	21,7	8,53	365	6	0,92	39,6	3660	5, 29			
1210	21,6	8,00	487	6	0,84	46,3	4200	5,29			
1213	21,8	7,66	640	5	0,79	53.9	4800	5,28			
1216	21,7	7,63	666	5	0,77	56.5	5400	5,28			
1219	21,9	7.61	700	5	0,79	5Z.9	6000	5,29			
Did well d	lewater?	Yes	(Vo)		Amount a	actually	evacuated: (-000 ml			
Sampling	Time:	1220			Sampling	Date:	10/9/18				
Sample I.I	D.:	J6038-	TRC-1009	18	Laborato	ry:	Test America	ı - SF			
	nalyzed for: HVOC's (820				60B)						
Blank I.D.	•		@ Time		Duplicate	I.D.:		@ Time			
Analyzed t	for	III	/OC's (826	ΩD)							

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

LOW	FLOW	WELL	MONITORIN	NG DATA	SHEET
-----	-------------	------	------------------	---------	-------

P		LOW I	LUW WE	PP MOM	IUKIN	ı DAIA	SHEET				
Project #	: 1800	10 DL	181008pc-1 -	Client:	AECOM	I @ TRW	Microwave -	Sunnyv	ale, CA		
Sampler:	KS	***************************************		Start Date	e: \O-	7-18			***************************************		
Well I.D.	***	13A		Well Dia	meter: 2	2 3	4 6 8($\overline{1^{n}}$			
Total We	ll Depth:	18.81	3	Depth to	Depth to Water Pre: 6.50 Post: 6.51						
Depth to	Free Prod	duct: _		Thickness				NAME OF THE OWNER	AMARAMAN I PROVINCIA MERCENIA LA INVESTIGACIÓN DE LA INVESTIGACIÓN		
Reference	ed to:	PVC		Flow Cell	Type:	YSI	556		M730-3111.		
Purge Metho	od:	Peristal	tic Pump Bla			***************************************		N-			
Sampling M	lethod:	New Tu		*	Other:	W		••			
Start Purge:	1404		Flow Rate:	200 m			Pump Depth:	- <u>14</u>			
Time	Temp.	pН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	1	TW / rvations		
1405	21.4	7,33	1300	7	1.67	-92.7	200	6.50	Ckar		
1408	21.4	7.36	1322	6	0.52	-111.9	800	6.53			
1411	21.4	7.37	1322	5	0.47	-119.0	1400	6.53			
1414	21.3	7.38	1313	5	0.52	-123.3	2000	6.51			
1417	21.3	7.38	1300	4	3.49	-125.2	7 / -	6.51	See		
1420	21.3	7.39	1291	4	0.43	-130.5	7 -	6.51			
1423	21.2	7.39	1280	-4	0.39	-132.5	3 <i>80</i> 0	6.51			
1426	21.2	7,39	1278	4	0.37	-131.8	4400	6.51	V		

Did well d		Yes (No No		Amount a	actually e	evacuated: 44	400	ml		
Sampling	Time:	430		1	Sampling	Date:)	0-9-18				
Sample I.D		J6038-~	Π3A-100°	918	Laborato	y: '	Test America	ı - SF			
Analyzed f		H	VOC's (826	(0B)							
Blank I.D.:	•		@	Duplicate I.D.:							
	PARTICIPATION AND AND AND AND AND AND AND AND AND AN		Time	PRINCIPALITY			***************************************	@ Time			
Analyzed f	for:	H	OC's (826	0B)					Animal Property of the Control of th		

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

p			TOM ME	LL MUNI	IORING	<u>, DAIA</u>	SHEET				
Project #	: 1808	HODE	181008DL-1 D	Client:	AECOM	I @ TRW	Microwave -	Sunnyv	ale, CA		
Sampler:	Ks			Start Date	e: 10-	08-18					
Well I.D.	: 7-14	IA		Well Dian	meter: 2	2 3	4 6 8 (
Total We	ll Depth:	17.93		Depth to	Depth to Water Pre: 6,35 Post: 6.41						
Depth to	Free Proc	duct:		Thickness	s of Free	Product ((feet): -		***************************************		
Reference	ed to:	PVC		Flow Cell	Type:	YSI	556				
Purge Metho	od:	Peristalt	tic Pump Bla	adder Pump	Other:	•					
Sampling M	ethod: (New Tul	bing		Other:						
Start Purge:	1118		Flow Rate:	200 mc/	wiv	-	Pump Depth:	12			
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	1	TW /		
1119	21.0	7,33	1285	12	0.86	-2088	200	6.35	l Cleos Odos		
1122	20.9	7.31	1300	10	0.60	-213.2	800	6.38			
1125	20.8	7.32	1310	9	0.55	-213.6	1400	6.41			
1128	20.9	7.28	1314	8	0.59	-210.9	2003	6.41	and the second s		
1131	20.9	7.31	1317	7	0.54	-213.7	2600	6.41			
1134	20.9	7.33	1319	7	0.52	- 213.6	3200	6.41	ν		
					e.				HEAT TO THE TOTAL THE TOTA		
					A PARTITION OF THE PART				***************************************		

							Personal description of the second of the se				
Did well d	lewater?	Yes (No.		Amount	actually	evacuated: 3	200	ml		
Sampling	Time:	135		NAME OF THE PARTY	Sampling	Date:	10-9-18	***************************************			
Sample I.I	D.:	J6038-T	114A - 1009	18	Laborato	ry:	Test America	a - SF			
Analyzed		H	VOC's (826						4		
Blank I.D.	•		@ Time		Duplicate	e I.D.:		@ Time	:		
Analyzed	for	TIT	VOC's (826	(AD)							

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

	**************************************	LUWE	LOW WE	LL MON	TORING	JUALA	SHEET			
Project #	: 18608	6-D11		Client:	AECOM	I @ TRW	Microwave -	Sunnyvale, CA		
Sampler:	DL			Start Date	e: 10//0	5/18				
Well I.D.	: T-15,	4		Well Dia			4 6 8	(14)		
Total We	ll Depth:	18,91		Depth to	Depth to Water Pre: 6,14 Post: 6,18					
Depth to	Free Prod	duct:		Thickness	***************************************	***************************************				
Reference	ed to:	PVC		Flow Cell	l Type:	YSI	Pro P141			
Purge Metho Sampling M	lethod:	New Tul		_	Other			- 1 - 1		
Start Purge:	<u>09 38</u>		Flow Rate:	Zovmi	/mh		Pump Depth:	15		
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations		
0941	26,4	6,99	1317	3	2,87	-12,0	600	6,16		
6944	20,7	6,48	1334)	2,24	16,1	120	6.16		
6947	26,6	6,98	1335	1	1,69	27.8	1876	6.16		
0950	20.7	6,98	1337	ţ.	1,39	34.8	2400	6.17		
0953	20,8	6,98	1339	***	1,70	39,7	3660	6,17		
0956	20,6	6,99	1339	-	1,00	42,6	3600	6.17		
0954	20,6	6,99	1339	l	0.94	414,1	4200	6.18		
1007	20,4	6,99	1338		0,90	45,9	4800	6,18		
1605	20,5	7100	1340	1	0,88	46.6	5460	6.18		
1008	20.5	7.00	1339	l	0,87	47,9	6010	6.18		
Did well d	lewater?	Yes	NG		Amount	actually	evacuated: 6	500 ml		
Sampling	Time: 1	010			Sampling	g Date: /	0/10/18			
Sample I.I	D.:	J6038-7	15A-10101	8	Laborato	ry:	Test America	a - SF		
Analyzed	for:	H	VOC's (826	60B)						
Blank I.D.	:		@ Time		Duplicate	e I.D.:		@ Time		
Analyzed	for:	. H	VOC's (826	(60B)	**************************************					

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

	~~~~~~	LUWF	LOW ME		TOKIN	JUALA	SHEET		90H344			
Project #:	: 18081	(1) too	181008pc-1	Client:	AECOM	I @ TRW	/ Microwave -	Sunnyv	ale, CA			
Sampler:	KS			Start Date	e: 10-8	3-18						
Well I.D.	: T-16	A			Well Diameter: 2 3 4 6 8 (111)							
Total We	ll Depth:	18.70		Depth to	Water	Pre:6,	33 Post	: 6.3.	<del></del> 3			
Depth to	Free Prod	duct: -			Thickness of Free Product (feet): —							
Reference	ed to:	PVC		Flow Cell	l Type:	YSI	1556					
Purge Metho Sampling M		Peristalt New Tu	tic Pump Bla	adder Pump	Other Other	***************************************						
Start Purge: 1451 Flow Rate: 200mL/Min Pump Depth: 14'												
									TW / rvations			
1452	25.0	7,26	1318	7	1.37	-97.1	200	6.33	Clear			
1455	25.1	7.28	1329	6	0.68	-116.9	800	6.33				
1458	25.3	7.29	1336	6	0.60	125.4	1400	6.33	The state of the s			
1501	25.2	7.30	1339	6	0.58	-127.4	2000	6,33	energia de professora de la composição d			
1504	25.1	7.30	1331346	8	0.45	-136-1	2600	6.33				
1507	257	7.30	1340		0.44	-131.4	3200	6.33	ever-declaration in Lincoln			
1510	25.3	7.30	1343	9	0.37	-/32.4	<i>380</i> 0	6.33				
1513	25.2	7.31	134	9	0.37	-132.6	4400	6.33	<b>V</b>			
****												
Did well dewater? Yes (No ² ) Amount actually evacuated: 4400 ml												
Sampling '	Time:	15	15	The second secon	Sampling	g Date:	10-9-18		***************************************			

J6038-T16A-100918 Analyzed for: HVOC's (8260B)

Blank I.D.: Duplicate I.D.:

Time

Analyzed for: HVOC's (8260B)

Sample I.D.:

Laboratory:

Time

(a)

**Test America - SF** 

			LOW WE	LL MONI	TOKING	TUALA	SUREI			
Project #	: 1808	100L-KG	181008DL-1 D	Client:	AECOM	I @ TRW	Microwave -	Sunnyv	ale, CA	
Sampler:	Ks			Start Date	e: <i>[0-</i>	8-18				
Well I.D.	: 7-1	7A		Well Dia	meter: (2	2) 3	4 6 8			
Total We	ll Depth:	20.14		Depth to Water Pre: 6.60 Post: 6.61						
Depth to			_	Thickness				100 mm - 100		
Reference	ed to:	PVC	1/2	Flow Cell	l Type:	YSI	556			
Purge Metho	od: /	Peristalt	ic Pump Bla	adder Pumn	Other:		n erick framskå hat stiffigen fra en gregoring nock fra de en verde en			
Sampling M	`	New Tul			Other	***************************************		-		
Start Purge:	1229		Flow Rate:	_200n	nL/Min		Pump Depth:	_/3′		
Time	Temp.	pН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	į.	ΓW / rvations	
1230	23.8	7.50	1044	19	2.70	-118.8	200	6,60	Clear	
1233	23.9	7.45	1052	6	2.22	-119.1	800	6.60		
1236	244	7.36	1070	6	2.08	-110.3	1400	6.60		
1239	24.4	7.34	1084	6	1.96	-104.9	2000	6.61		
1242	24.7	7.33	1088	5	1.82	- 1059	26 <i>0</i> 0	6.61		
1245	24.8	7.33	1091	5	1.84	=106.6	3200	661		
1248	24.7	7.36	1106	5	1.81	-103.8	2000	6.61	Ψ	
Did well d	lewater?	Yes (	No		Amount	actually	evacuated: ३	900	ml	
Sampling Time: 1250					Sampling	g Date: /	5-9-18			
Sample I.D.: J6038-T17A-1091				8	Laborato	ry:	Test America	a - SF		
Analyzed for: HVOC's (82				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
Blank I.D.:  @ Time				Duplicate I.D.:  @ Time						
Analyzed	for:	H	VOC's (826	50B)						

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

		LUW F	LOW WE	LL MUNI	IURING	JUAIA	SHEET	
Project #	: 18100	18- DL1		Client:	AECOM	I @ TRW	Microwave -	Sunnyvale, CA
Sampler:	DL			Start Date	e: 16/1 ₁	1//8		
Well I.D.	: T-17	B		Well Dian	meter: 2	2 3	4 6 8	(D)
Total We	ell Depth:	34,4	0	Depth to	Water	Pre: 6.	4/ Post:	: 6,51
Depth to	Free Proc	duct:		Thickness	s of Free	Product (	(feet):	
Reference	ed to:	PVC		Flow Cell	l Type:	YSI	Proplus	
Purge Metho	od:	Peristalt	tic Pump Bla	adder Pump	Other:	90000000000000000000000000000000000000		
Sampling M	lethod:	New Tub	bing		Other:			•
Start Purge:	: 1128	_	Flow Rate:	200 m	Umn	_	Pump Depth:	30'
Time	Temp.	рН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
1138	22.0	7.34	1281	5	1,69	-45.1	600	6,50
1134	134 21.9 7.32 1281				1,49	-48,4	1200	6,50
1137	21.3	7,31	1269	6	1,18	-47.0	1800	6.50
1140	21.4	7,31	1269	7	0,95	-47.6	2400	6.50
1143	21.5	7,30	1267	Z	0,82	-47.4	3000	6.51
1146	21.7	7.29	1265	6	0,74	-45,9	3600	6.60
1149	21.5	7,29	1262	4	0,68	-44,3	4200	6.51
1152	21,6	7,29	1261	6	0.59	- 43,8	4800	6.51
1155	21.8	7.29	1261	5	0,57	- 43,6	5400	6.51
1158	21,6	7,29	1260	5	0.57	-43,3	6000	6.51
Did well d	lewater?	Yes (	Nò		Amount a	actually o	evacuated: 6	Ovo ml
Sampling		200			Sampling	g Date: 1	0/11//8	
Sample I.I	D.:	J6038- T	17B-101	118	Laborator	ry:	Test America	a - SF
Analyzed	for:	H	VOC's (826	60B)				
Blank I.D.	•		@ Time	Duplicate I.D.:				
Analyzed	for:	H	VOC's (826	50B)				A A COLOR A Palace

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

Project #: 18/068 -DV1	Client: AECOM @ TRW Microwave - Sunnyvale, CA
Sampler: DC	Start Date: 10/8//8
Well I.D.: T-18B	Well Diameter: ② 3 4 6 8
Total Well Depth: 46.26	Depth to Water Pre: 4.73 Post: 5161
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVC	Flow Cell Type: YSI Pro Plus

Purge Method:		Peristaltic Pump Blac	dder Pump	Other:		
Sampling Method:		New Tubing		Other:		
Start Purge:	1358	Flow Rate:	260 m U/m	n	Pump Depth:	43.5

Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
1401	22.8	9,18	745	12	3,17	1810	600	4.77
1404	22,8	9,18	737	10	295	13,4	1200	4.83
1407	22.5	9,16	737	9	2.70	16,0	1800	4,86
1410	2216	9,13	737	10	2,61	7.3	2400	4,90
1413	22.4	9,08	740	10	2.40	6.0	3000	4,92
1416	22,8	9,04	743	9	2,37	5,5	3600	4,93
1419	23,0	8,95	799	9	2,30	5.1	4200	4.93
1422	22.9	8.60	756	6	2,11	5,4	4800	4,94
1425	22,4	8,00	781	5	2,04	<b>-9</b> 5,9	5400	4.96
1478	23,3	7.76	809	4	2,03	-101.9	6000	4,98
Did well d	lewater?	Yes	<b>1</b>		Amount	actually	evacuated: 7	800 ml
Sampling '	Time: /	1440			Sampling	g Date:	1018/18	
Sample I.I	D.:	J6038-	T18B-1008	ક <i>1</i> ષ્ઠ	Laborato	ry:	Test America	a - SF
Analyzed	for:	Н	VOC's (826	50B)			ant film and the second	
Blank I.D.	: anu-56	638- <i>10</i> 08/	Time	730	Duplicate	e I.D.:		@ Time

BLAINE TECH SERVICES, INC.

Analyzed for:

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

HVOC's (8260B)

	-										
Project #:	181008 -	DUI		Client:	Client: AECOM @ TRW Microwave - Sunnyvale, CA						
Sampler:	DL			Start Date	: 10/8/	18					
Well I.D.:	T-18	В		Well Diar	neter: <i>(</i> 2	3	4 6 8 _				
Total Wel	l Depth:	46.26		Depth to	Depth to Water Pre: 4.73 Post: 5101						
Depth to I	Free Prod	luct:		Thickness	of Free I	Product (	(feet):				
Reference	d to:	PVC		Flow Cell	Flow Cell Type: YSI 900 Plus						
Purge Metho Sampling Mo Start Purge:	ethod:	New Tul		adder Pump	Other:		Pump Depth:	43.5			
Time	Temp.	pH	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations			
1431	23,6	7.69	833	4	2.06	-107.7	6600	4,94			
1434					2,07	-103,3	7200	5,00			
1437	23,3	7.64	853	3	2,04	-98,4	7800	5,01			
	was an		mulautustan eta arra de la companya								
Did well d	lewater?	Yes (	No		Amount	actually	evacuated:	7800 ml			
Sampling	Time: 10	440			Sampling	g Date: /	0/8/18				
Sample I.D.: J6038- 118B - 100				818	Laborato	ory:	Test Americ	a - SF			
Analyzed for: HVOC's (826				60B)							
Blank I.D.	•		@		Duplicat	e I.D.:		@			

BLAINE TECH SERVICES, INC.

Analyzed for:

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

Time

HVOC's (8260B)

www.blainetech.com

Time

Project #: 181008 - DU	Client: AECOM @ TRW Microwave - Sunnyvale, CA
Sampler: DL	Start Date: 10/8//8
Well I.D.: T - 19 A	Well Diameter: 2 3 4 6 8
Total Well Depth: Zo,84	Depth to Water Pre: 6.61 Post: 6.65
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVC	Flow Cell Type: YSI 710 Plus

Purge Method:	Peristaltic Pump Blac	Ider Pump Other:		
Sampling Method:	New Tubing	Other:		
Start Purge: 1/18	Flow Rate:	200 ml / 100	Pump Denth: 157	

p	·							
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
1521	23,7	7.08	1373	16	4,74	418.5	600	6.64
1524	23,7	7,10	1366	18	3,92	-123,5	1200	6.63
1527	23,6	7,11	1357	24	3,27	-123,2	1800	6.62
1530	23,7	7,11	1353	24	2.83	-124,0	2400	6,62
1533	23,6	7111	1350	25	2.43	-124,2	3000	6.64
1536	23,6	7,10	1348	15	2,27	-125,1	3 <i>6</i> 00	6,63
1539	23,4	7,10	1339	38	2.00	-126,0	4200	6,64
1542	<i>2</i> 3,3	7:11	1328	57	1.77	-125,6	4800	6.65
1545	23,5	7,10	1376	47	1,56	-125,0	54W	6,65
1548	23,5	7,10	1331	65	1, 39	-124,9	6000	6,65
Did well d	lewater?	Yes (	No		Amount actually evacuated: 11400 ml			
Sampling	Time: 1	620			Sampling	g Date: 10	0/81/8	
Sample I.I	O.:	J6038-	T194-1008	5 K	Laborato	ry:	Test America	a - SF
Analyzed	for:	H	VOC's (820	50B)				
Blank I.D.	•				Duplicate	e I.D.:		
	-		@ Time					@ Time
Analyzed	for:	H	VOC's (82 <i>6</i>	60B)				

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

	DOW PLOW W	ELL MONITORING DATA SHEET
Project #: 18100	8-DL1	Client: AECOM @ TRW Microwave - Sunnyvale, CA
Sampler: D L		Start Date: 16/8//8
Well I.D.: T-19	A	Well Diameter: 2 3 4 6 8
Total Well Depth: 20,84		Depth to Water Pre: 6.61 Post: 6.65
Depth to Free Pro	duct:	Thickness of Free Product (feet):
Referenced to:	PVC	Flow Cell Type: YSI Pro P/45
Purge Method:	Peristaltic Pump	Bladder Pump Other:
Sampling Method:	New Tubing	Other:

Start Purge:	1518	-	Flow Rate:	200 m	/mm		Pump Depth:	15'
Time	Temp. (°C)	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
1551	723,4	7,10	1328	71	1,30	-125,0	6600	6,65
1554	23,3	7,10	1326	64	1,20	-12516	7200	6.65
1557	23.6	71/0	137	45	1.11	-126,7	7800	6,65
1600	23,6	7,10	1323	44	1.06	-126.5	8460	6.65
1603	23,5	7,10	1325	31	1,63	-127.1	9000	6,65
1606	23,5	7,10	1322	25	D,96	-127.7	9600	6.65
1609	23,5	7,11	1319	19	0,92	-128,2	10700	6,65
1612	23,3	7.11	13/8	21	0.90	-127.9	10800	6.65
1615	23,5	7111	1317	21	0,88	-12811	9+4411400	6,65
			15************************************					

Did well dewate	r? Yes No	Amount actually evacuated: 11400 m Sampling Date: (0/8//8					
Sampling Time:	16 20						
Sample I.D.:	J6038-T19A-100818	Laboratory:	Test America - SF	Antonio Constituti National Constituti de la constituti d			
Analyzed for:	HVOC's (8260B)	***************************************					
Blank I.D.:	@	Duplicate I.D.:	@				
3	Time		Time				
Analyzed for:	HVOC's (8260B)			***************************************			

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

Project #: 181008 - D 11	Client: AECOM @ TRW Microwave - Sunnyvale, CA
Sampler: DL	Start Date: 10/9//8
Well I.D.: T-19B	Well Diameter: 2 3 4 6 8
Total Well Depth: 39,34	Depth to Water Pre: 5,33 Post: 5,44
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVC	Flow Cell Type: YSI Pro Pins

Purge Method:	Peristaltic Pump Bladder Pun	mp Other:		
Sampling Method:	New Tubing	Other:		
Start Purge: 6834	Flow Rate: 200	m/mh	Pump Depth:	341

Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observation	
0837	19,1	7.31	1086	7 1000	2,96	737.3	600	5,37	Cle
0840	18,9	7,30	1680	7/000	2,59	231.3	Mu	5,41	
0843	19,1	7,30	1074	71000	2,44	228,2	1800	5,42	
6846	19,0	7,30	1072	71000	2,27	276.8	7400	5,42	
0849	19,1	7,30	1065	7/000	7.77	211,0	3000	5,42	
0852	19,0	7,30	1064	997	1,80	209,1	3600	5,43	
0865	19,1	7,30	1058	<b>6</b> 64	1,80	208.1	4700	5,43	
0858	19,2	7,30	1056	377	1.64	207.1	4800	5,43	
0901	14,3	7130	1050	353	1,59	205,9	5400	5.44	
0904	14,4	7,30	1048	340	1,60	205,1	6000	5,44	$\dashv$
Did well d	lewater?	Yes (	No)	-	Amount	actually o	evacuated: 6	000	ml
Sampling	Time: C	7905			Sampling	g Date:	10/4/18	75°Athronocompositive Antice Marie Compositive Composi	
Sample I.I	D.:	J6038-	T193-100	918	Laborato	ry:	Test America	ı - SF	
Analyzed	for:	H	VOC's (826	50B)		***************************************			
Blank I.D.	M-26038- :	100918	@ _{Time} ()	730	Duplicate	e I.D.:		@ Time	

BLAINE TECH SERVICES, INC.

11

Analyzed for:

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

HVOC's (8260B)

www.blainetech.com

<u> </u>			DOW WILL	ULIVIOIVI	LOMING		SILIUI I		
Project #:	: 181008	-DC1		Client:	AECOM	l @ TRW	Microwave - S	Sunnyvale, CA	
Sampler: D L			Start Date	Start Date: 16/16/18					
Well I.D.: 7 - 70 B			Well Dia	Well Diameter: (2) 3 4 6 8					
Total We	ll Depth:	27,0	4	Depth to	Water	Pre: 4	Post:	4.85	
Depth to	Free Prod	luct:	P	Thickness	s of Free	Product	(feet):		
Reference	ed to:	PVC	***************************************	Flow Cell	Type:	YSI	Pro Plys		
Purge Method: Peristaltic Pump Black Sampling Method: New Tubing			adder Pump Zoo ml,	Other:	***************************************		24.51		
Start Purge:	<u> 1617</u> T	_	Flow Rate:		<u> </u>		Pump Depth:		
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations	
1222	21,8	7,42	1347	4	3,36	59,0	60v	4,73	
1225	21.7	7,41	1393	4	3,00	60,5	1200	4,76	
1228	21.6	I,40	1392	3	2,71	62,9	1800	4,78	
1231	21,6	7,39	1391	4	2,70	64,7	2400	4,80	
1234	21,6	7,39	1341	3	2,68	66,6	3000	4.83	
1237	21,6	7,39	1390	3	2,66	67.5	3600	4,85	
				100000000000000000000000000000000000000					
Did well d	lewater?	Yes	No.		Amount	actually	evacuated: 3	600 ml	
Sampling	Time: )	240			Sampling	g Date: /	6/10/18		
Sample I.D.: J6038- T203-/0/0)			8	Laborato		Test America	a - SF		
Analyzed	for:	H	VOC's (82	60B)	····				
Blank I.D.	:		@ Time		Duplicate	e I.D.:		@ Time	
Analyzed	for:	H	VOC's (820	60B)		PDOWN PROSPERATE TO THE STATE OF A STATE AND A STATE A	· · · · · · · · · · · · · · · · · · ·		

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

					T OTENT	<i>P                                    </i>	. Careral	
Project #:	: 18 10 08	-DU		Client:	AECOM	I @ TRW	Microwave - :	Sunnyvale, CA
Sampler: DL			Start Date	e: 10//	0/18			
Well I.D.: T-Z1B			Well Dia	-		4 6 8		
Total We	ll Depth:	27.34		Depth to	Water	Pre: 6,	7/ Post:	: 6,87
Depth to	Free Proc	luct:		Thickness	s of Free	Product	(feet):	
Reference	ed to:	PVC		Flow Cell	l Type:	YSI	Pop Plas	
Purge Metho	od:	Peristalt	tic Pump Bl	adder Pump	Other	:		
Sampling M		New Tu		-	Other			<del>-</del>
Start Purge:	1335	-	Flow Rate:	Zob m			Pump Depth:	24,5
Time	Temp.	pН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
1338	22,8	7.31	13/8	6	2,20	48,3	600	6.74
1341	22.6	7,31	13/3	4	1,69	4518	1200	6,77
1344	22.7	7.31	13/0	4	1.40	44,0	1800	6.80
1347	22,7	7,32	1313	4	1.00	41,3	2400	6,87
1350	22,5	7,32	1311	3	0.84	37,5	300	6.84
1363	22,4	7,31	1310	3	0.82	35,1	3600	6,86
1357	22,4	7,31	13 11	4	0,81	32,9	4700	687
***************************************								
	NA NA WOOD AS A SA COMMAND ON THE SA C							
Did well d	lewater?	Yes (	No No	274102 1291 A 2006 H H H SSS 1 A 2006 A	Amount	actually	evacuated: 4	1200 ml
Sampling	Time: 1	400			Sampling	g Date:	10/10/18	
Sample I.D.: J6038- 127+ 7718			B-101016	Laborato	ry:	Test America	a - SF	
Analyzed	***************************************	H	VOC's (820	60B)				
Blank I.D.	:		@ Time		Duplicate	e I.D.:		@ Time
Analyzed	for:	$\mathbf{H}$	VOC's (820	50B)	***************************************			

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

Project #: 181008-Dil	Client: AECOM @ TRW Microwave - Sunnyvale, CA				
Sampler: DL	Start Date: 10/14/18				
Well I.D.: T-22B	Well Diameter: ② 3 4 6 8				
Total Well Depth: 24,43	Depth to Water Pre: 5,88 Post: 5,98				
Depth to Free Product:	Thickness of Free Product (feet):				
Referenced to: PVC	Flow Cell Type: YSI Pro Plus				

Purge Metho	d:	Peristaltic Pump Bla	adder Pump O	ther:	
Sampling Me	ethod:	New Tubing	O	ther:	
Start Durga:	27,11	Flow Potos	200 m/ hum	Dumm Donth.	74 5

Time	Temp.	pН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
0744	20.4	6.95	1432	7	2,73	9161	600	5.90
6747	20,7	6,96	1476	, and an	1.99	88.0	1200	5,93
0750	20,8	6,97	1422	7	1,56	84,9	1800	5,95
0753	26.8	6,98	1463	, and an analysis of the second	1,30	82.2	2400	5.96
0756	20,7	6,99	1396	U	1,11	80,4	3000	5,97
6754	2013	7.00	1391	1	1,02	78,6	3600	5,97
0802	20,3	7.01	1390	1	0.93	77.1	4200	5,97
0805	20,4	7.01	1390	î	0,84	77.1	4800	5,98
0808	26,2	7,02	1387	1	0.83	77.0	5400	5,98
0811	20,3	7,02	1391	**************************************	0,81	75,8	6000	5198
Did well d	lewater?	Yes	(No)		Amount	actually	evacuated: 6	ώοω ml
Sampling	Time: O	815			Sampling	g Date: (	0/10/18	
Sample I.I			T22B-161	4/8	Laborato	***************************************	Test America	a - SF
Analyzed	for:	H	VOC's (826	50B)				
Blank I.D.	: i-36038-	1011 18	@ O	730	Duplicate	e I.D.:		@ Time

BLAINE TECH SERVICES, INC.

Analyzed for:

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

HVOC's (8260B)

	***************************************	LOW E	DOW WE	LL WUIL	TOMING	JUALA	CHILIDED I	
Project #:	: 1 <del>808 K</del>	ODL TO	181008DL-1 D	Client:	AECOM	I @ TRW	/ Microwave - S	Sunnyvale, CA
Sampler:	KS	5		Start Date	e: 10 -8 -	-18		
Well I.D.	: T-2	-3A		Well Diar	meter: 2	2 3	4 6 8 (	1")
Total We	ll Depth:	1800	F	Depth to	Water	Pre:	.87 Post:	:6.99
Depth to	Free Proc	duct:	Population of the Control of the Con	Thickness	***************************************		***************************************	
Reference	ed to:	PVC		Flow Cell	Type:	YSI	556	
Purge Metho	od:	Peristal	tic Pump Bla	adder Pump	Other:	•		
Sampling M	ethod: (	New Tul			Other:	•		<del>-</del>
Start Purge:	0859		Flow Rate:	200 ML	_/min		Pump Depth:	15'
Time	Temp.	рН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
0900	19.63	6.96	1543	173	1.04	-15.7	200	6.87 (c/ca)
0903	19.9	7.15	1452	34	0.91	-56.3	800	6.99
0906	19.9	7.18	1428	16	0.89	-77.7	1400	6.99
0909	20.0	7.21	1418	12	0.94	-90.8	2000	6.99
0912	20.1	7.26	1411	12	0.82	-101.0	2600	6.99
0915	20.2	7.26	1408	12	0.78	-111.6		6,99
0918	20.2	7.26	1406	12	0.75	-109.8	38 <i>0</i> 0	6.991 +
								_
Did well d	lewater?	Yes (	No	APPROVED AND ASSESSMENT OF PROPERTY ASSESSMEN	Amount	actually	evacuated: 38	<i>80</i> 0 ml
Sampling '	Time: (	<u>)926</u>				***********************	10-9-18	
Sample I.I	<b>)</b> .:	J6038-~	T23A-1000		Laborato		Test America	a - SF
Analyzed	for:		VOC's (826			irin49/minhimononanananananananananananananan		
Blank I.D.	•		@ Time		Duplicate	≥ I.D.:		@ Time
Analyzed:	for:	H	VOC's (826	60B)				

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>LUW F</u>	LOW WE	LL MON	LUKING	<u>JUAIA</u>	· SHEET	
Project #	:181008	'-DL1		Client:	AECON	1 @ TRW	/ Microwave -	Sunnyvale, CA
Sampler:	DL	***		Start Date	e: 10/10,	118		
Well I.D.	.: T-23.j	В		Well Dia	meter: (2	5 3	4 6 8	
Total We	ll Depth:	29.08		Depth to	Water	Pre: 6	Post:	: 6,55
Depth to	Free Proc	duct:		Thickness	s of Free	Product	(feet):	
Reference	ed to:	PVC		Flow Cell	l Type:	YSI	IPA P145	
Purge Metho	od:	Peristal	tic Pump	adder Pump	Other:			
Sampling M	lethod:	New Tul	bing		Other:			м
Start Purge:	1435		Flow Rate:	100 mi	Jmy (du todran	Pump Depth:	28,51
Time	Temp.	pН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
1438	23,2	7,11	1385	25	7,32	80,0	300	6,60
141	23,3	7,10	1385	30	1.80	7510	600	6.58
1444	23,4	7,10	1385	го	1,27	6814	900	6,60
1447	23,2	7.11	1353	14	1,00	64,5	1200	6.70
1450	22,7	7.11	1385	12	0,94	60.1	1500	6.68
1453	22,6	7111	1379	17	0,87	56.2	1800	664
1456	22,9	7,11	1381	13	0,80	50,5	7100	6.59
1454	22,5	7,10	1377	15	0.69	36:1	2400	6.62
1502	22,4	7,10	1377	16	0.67	28,6	2700	6.66
1505	22,6	7,10	1379	17	0,66	27,0	3000	6,55
Did well d	lewater?	Yes	1		Amount	actually	evacuated: 3	3 <i>6</i> 00 ml
Sampling '	Time: 16	510	7000 Mariana Andreas (1900 Mariana 1900 Mariana 1900 Mariana 1900 Mariana 1900 Mariana 1900 Mariana 1900 Maria		Sampling	g Date: /	0/10/18	
Sample I.I) .:	J6038-7	T23B-1010	018	Laborato	ry:	Test America	a - SF
Analyzed		H	VOC's (826	50B)				
Blank I.D.	•		@		Duplicate	₹ I.D.:		
			<u></u>					@

BLAINE TECH SERVICES, INC.

Analyzed for:

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

HVOC's (8260B)

ptonintrio/statement		LUW F.	LUW WE		TORING	DAIA	SHELL	
Project #:	: 181008-	-D11		Client:	AECOM	I @ TRW	Microwave - S	Sunnyvale, CA
Sampler:	DL			Start Date	e: 10/11	118		
Well I.D.	: T-24	В		Well Dia		· ·	4 6 8	
Total We	ll Depth:	35,50		Depth to	Water	Pre: 7	,03 Post:	7.06
Depth to	Free Proc	luct:		Thickness	s of Free	Product	(feet):	***************************************
Reference	ed to:	PVC		Flow Cell	Type:	YSI	Phplu	
Purge Metho Sampling M	ethod:	Peristalt New Tul	Ü	adder Pump	Other	•		34,5
Start Purge:	T	<u> </u>	Flow Rate:			_	Pump Depth:	
Time	Temp.	рН	Cond. (µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations
6844	21.0	7.48	1287	4	2,70	77.9	600	7103
0847	21,4	7,46	1364	4	1,69	62,6	1200	7,06
0850	21,4	7,46	1309	2	1,36	51,3	1800	7.06
0853	21,4	7,47	131/	2	1.71	43,4	2400	7,05
0856	21,4	7.47	1374	, constant	0,96	3819	3000	7.05
0859	71,5	7,48	1313		0,83	34,0	3620	7.05
0902	21.6	7,49	1314	2	0,77	30,3	4200	7.05
0905	21,6	7,50	1317	2	0.70	26,3	4800	7.05
0908	21,3	7.51	1318	2	0,61	23,0	5700	7,05
0911	21.1	7,51	13/9	-	0.57	20.4	6000	7.06
Did well c	lewater?	Yes (Ño)		Amount	actually	evacuated:	8400 ml
Sampling	Time: 6	925			Sampling	g Date:	10//1//8	
Sample I.I	D.:	J6038-	T24B-1011	118	Laborato	ry:	Test America	a - SF

Sample I.D.: J6038-724B-1611/18

Analyzed for: HVOC's (8260B)

Blank I.D.:

Duplicate I.D.:

<u>@</u> Time

Analyzed for:

HVOC's (8260B)

Time

p-1		LOW I	LOW WE		LOMING	I IJA LA					
Project #	: 181008	-DL1		Client:	AECOM	@ TRW	/ Microwave - S	Sunnyvale, CA			
Sampler:	DL			Start Date	e: 10///	78					
Well I.D.	: T-241	3		Well Dia	meter: (2) 3	4 6 8				
Total We	ell Depth:	35,50		Depth to	Depth to Water Pre: 7.03 Post: 7.66						
Depth to	Free Proc	luct:		Thickness	s of Free	Product	(feet):				
Reference	ed to:	PVC					[Proplys				
Purge Methors Sampling Mostart Purge:	lethod:	Peristalt New Tul	ic Pump Blading Flow Rate:		Other: Other:		Pump Depth:	34.5			
Time	Temp.	рН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	DTW / Observations			
6914	21.0	7.51	1314	2	0.54	18,0	6600	7,06			
0917	21,3	7,51	13/8	1	0,50	12.1	7200	7,06			
0920	21,1	7.51	13/9		0,49	11.0	7800	7,06			
0923	21,2	7,51	1314	1	0.48	9.8	8400	7.06			
								A STATE OF THE STA			

			The time of the time of time of the time of time of the time of the time of time 			AV-H-V-C-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L					

Did well o	dewater?	Yes	No		Amount	actually	evacuated: 5	3460 ml			
Sampling	Time: O	925	**************************************		Sampling	***************************************	***************************************				
Sample I.I	D.:	J6038-	T24B-101	11/8	Laborato	ry:	Test America	a - SF			
Analyzed	for:	H	VOC's (820	60B)	A-0-1-AN-W-1-1-AV-1-1-AV-1-1-AV-1-1-AV-1-1-AV-1-1-AV-1-1-AV-1-AV-1-AV-1-AV-1-AV-1-AV-1-AV-1-AV-1-AV-1-AV-1-AV-1						
Blank I.D	•	****	@ Time		Duplicate	e I.D.:		@ Time			
Analyzed	for:	\mathbf{H}_{A}	VOC's (820	60B)							

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

F			LUW WE	LL MONI	IUKING	J DATA	SHEET		
Project #	: +808	100t to	810080L-1 D	Client:	AECOM	I @ TRW	Microwave -	Sunnyva	ale, CA
Sampler:	K	>		Start Date	e: [()-	8-18			
Well I.D.	: T-2	5A		Well Dia	meter: 2	2 3	4 6 8 9	(1")	
Total We	ll Depth:	18.9	O	Depth to	Water	Pre: 5,	80 Post:	5.92	,
Depth to	Free Pro	duct:	<	Thickness					**************************************
Reference	ed to:	PVC		Flow Cell	І Туре:	YSI	556	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Purge Metho Sampling M		Peristal New Tu	tic Pump Bla	ıdder Pump	Other	***************************************	POTE TO THE TOTAL PROPERTY OF THE TOTAL PROP	-	
Start Purge:	18/1324		Flow Rate:	200 c	nL/Min	-	Pump Depth:	13	/
Time	Temp.	рН	Cond. (μS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (mL)	§	W / vations
1325	23,5	7.24	1348	10	1.40	-125.5	200	5.80	CKar
1328	23,6	7.31	1347	8	0.54	-129.5	800	5.92	7
1331	23.7	7.30	1348	6	0.53	-125.8	1400	5.92	
1334	23.6	7.31	1352	5	0.58	-124.0	2000	5.92	
1337	23.5	7.31	1352	5	0.54	-124.7	2600	5.92	and the second s
1340	23.5	7.31	1351	5	0.51	-125.4	3200	5.92	Y
								\$	***************************************
***************************************	with the contract of the contr							***************************************	
								777777744444	PARTONIA PROGRAMA DE CONTRA DE

Did well d	lewater?	Yes (No		Amount	actually	evacuated: 3	200	ml
Sampling	Time:	1345	**************************************		Sampling	g Date:	1969/18		
Sample I.I). :	J6038-	T25A-1009	118	Laborato	ry:	Test America	a - SF	
Analyzed	***************************************	H	VOC's (826						
Blank I.D.	•		@ Time		Duplicate	e I.D.:		@ Time	
Analyzed	for:	Н	VOC's (826	(0B)			MANAGONI (A)	***************************************	

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE PHOENIX

Appendix B Historical Water-Level Elevation Measurements

Historical Water-Level Elevation Measurements Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California

			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-1A	Α	1/16/1986	7.50	37.48	29.98
T-1A	Α	3/14/1986	6.35	37.48	31.13
T-1A	Α	4/23/1986	8.50	37.48	28.98
T-1A	A	5/13/1986	8.15	37.48	29.33
T-1A	Α	7/24/1986	8.93	37.48	28.55
T-1A	Α	10/2/1987	9.75	37.48	27.73
T-1A	Α	11/30/1987	11.64	37.48	25.84
T-1A	Α	2/24/1988	11.70	37.48	25.78
T-1A	Α	4/12/1988	12.62	37.48	24.86
T-1A	А	7/26/1988	14.69	37.48	22.79
T-1A	Α	10/25/1988	15.17	37.48	22.31
T-1A	Α	1/10/1989	15.07	39.66	24.59
T-1A	Α	4/3/1989	18.63	39.66	21.03
T-1A	Α	9/14/1989	17.87	39.66	21.79
T-1A	Α	10/10/1989	18.13	39.66	21.53
T-1A	Α	1/8/1990	20.03	39.66	19.63
T-1A	А	4/6/1990	18.86	39.66	20.80
T-1A	Α	7/5/1990	19.20	39.66	20.46
T-1A	А	10/9/1990	20.66	39.66	19.00
T-1A	А	1/8/1991	21.15	39.66	18.51
T-1A	Α	4/9/1991	19.72	39.66	19.94
T-1A	А	7/9/1991	22.22	39.66	17.44
T-1A	А	10/7/1991	21.27	39.66	18.39
T-1A	А	1/6/1992	20.17	39.66	19.49
T-1A	А	4/6/1992	19.41	39.66	20.25
T-1A	Α	7/6/1992	20.13	39.66	19.53
T-1A	А	10/29/1992	19.93	39.66	19.73
T-1A	А	1/5/1993	19.50	39.66	20.16
T-1A	Α	4/5/1993	17.82	39.66	21.84
T-1A	Α	7/6/1993	NM	39.66	NA
T-1A	А	10/15/1993	NM	39.66	NA
T-1A	А	1/11/1994	14.03	39.66	25.63
T-1A	A	4/4/1994	11.27	39.66	28.39
T-1A	A	7/6/1994	10.51	39.66	29.15
T-1A	Α	10/5/1994	10.59	39.66	29.07
T-1A	A	1/10/1995	NM	39.66	NA
T-1A	A	4/5/1995	9.48	39.66	30.18
T-1A	A	7/5/1995	NM	39.66	NA
T-1A	A	10/9/1995	11.40	39.66	28.26
T-1A	A	7/10/1996	12.67	39.66	26.99
T-1A	A	10/1/1996	12.94	39.66	26.72
T-1A	A	4/1/1997	10.83	39.66	28.83
T-1A	A	10/1/1997	11.99	38.46	26.47
T-1A	A	4/1/1998	9.48	38.46	28.98
T-1A	A	10/5/1998	10.70	38.46	27.76
T-1A	A	4/5/1999	10.42	38.46	28.04
T-1A	A	10/4/1999	10.79	38.46	27.67
T-1A	A	10/2/2000	11.91	38.46	26.55

			ater-Level Elevation M ner TRW Microwave F		
			art Drive, Sunnyvale,		
			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-1A	Α	10/1/2001	10.64	38.46	27.82
T-1A	Α	10/14/2002	10.36	38.46	28.10
T-1A	Α	10/9/2003	9.01	38.46	29.45
	Per W	ater Board approv	al, well T-1A was aban	doned in February 2004.	
T-2A	Α	5/13/1986	23.00	39.65	16.65
T-2A	Α	7/24/1986	12.73	39.65	26.92
T-2A	Α	10/2/1987	10.67	39.65	28.98
T-2A	Α	11/30/1987	12.15	39.65	27.50
T-2A	Α	2/24/1988	11.74	39.65	27.91
T-2A	Α	4/12/1988	15.32	39.65	24.33
T-2A	A	7/26/1988	15.59	39.65	24.06
T-2A	A	10/25/1988	15.88	39.65	23.77
T-2A	A	1/10/1989	15.50	39.68	24.18
T-2A	A	4/3/1989	12.55	39.68	27.13
T-2A	A	9/14/1989	16.31	39.68	23.37
T-2A	A	10/10/1989	15.77	39.68	23.91
T-2A	A	1/8/1990	12.88	39.68	26.80
T-2A	A	4/6/1990	17.40	39.68	22.28
T-2A	A	7/5/1990	16.06	39.68	23.62
T-2A	A	10/9/1990	16.64	39.68	23.04
T-2A	A	1/8/1991	10.18	39.68	29.50
T-2A	A	4/9/1991	NM	39.68	NA
T-2A	A	7/9/1991	16.66	39.68	23.02
T-2A	A	10/7/1991	17.16	39.68	22.52
T-2A	A	1/6/1992	16.37	39.68	23.31
T-2A	A	4/6/1992	16.91	39.68	22.77
T-2A	A	7/6/1992	15.26	39.68	24.42
T-2A	A	10/29/1992	16.61	39.68	23.07
T-2A	A	1/5/1993	Dry	39.68	NA
T-2A	A	4/5/1993	17.34	39.68	22.34
T-2A	A	7/6/1993	17.54	39.68	22.14
T-2A	A	10/15/1993	Dry	39.68	NA 04.04
T-2A	A	1/11/1994	18.47	39.68	21.21
T-2A	A	4/4/1994	Dry	39.68	NA NA
T-2A	A	7/6/1994	18.97	39.68	20.71
T-2A	A	10/5/1994	Dry	39.68	NA 01.00
T-2A	A	1/10/1995	18.65	39.68	21.03
T-2A	A	4/5/1995	17.91	39.68	21.77
T-2A	A	7/5/1995	19.25	39.68	20.43
T-2A	A	10/9/1995	18.60	39.68	21.08
T-2A	Α	7/10/1996	17.45	39.68	22.23
T-2A	A	10/1/1996	12.56	39.68	27.12
T-2A	Α	4/1/1997	17.32	39.68	22.36
T-2A	Α	10/1/1997	16.70	40.99	24.29
T-2A	Α	4/1/1998	12.08	40.99	28.91
T-2A	Α	10/5/1998	Dry	40.99	NA
T-2A	Α	4/5/1999	14.51	40.99	26.48
T-2A	Α	10/4/1999	16.87	40.99	24.12

			ner TRW Microwave F	-	
		825 Stew	art Drive, Sunnyvale,	California	
			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-2A	A	10/2/2000	13.22	40.99	27.77
T-2A	A	10/1/2001	11.46	40.99	29.53
T-2A	A	10/1/2002	9.42	39.46	30.04
T-2A	A	10/9/2003	8.56	39.46	30.90
T-2A	A	10/4/2004	9.02	39.46	30.44
T-2A	A	10/10/2005	7.82	39.46	31.64
T-2A	A	10/16/2006	7.69	39.46	31.77
T-2A	A	10/8/2007	7.39	42.16	34.77
T-2A	A	10/13/2008	7.83	42.16	34.33
T-2A	A	10/12/2009	8.78	42.16	33.38
T-2A	A	10/11/2010	8.45	42.16	33.71
T-2A	A	10/10/2011	8.01	42.16	34.15
T-2A	A	10/8/2012	8.03	42.16	34.13
T-2A	A	10/14/2013	8.53	42.16	33.63
T-2A	A	4/14/2014	8.05	42.16	34.11
T-2A	A	9/24/2014	8.08	42.16	34.08
			approval, well T-2A wa		
T-3A	A	1/15/1986	7.90	39.66	31.76
T-3A	A	3/14/1986	7.16	39.66	32.50
T-3A	Α	4/23/1986	9.50	39.66	30.16
T-3A	A	5/13/1986	9.75	39.66	29.91
T-3A	A	7/24/1986	9.89	39.66	29.77
T-3A	Α	10/2/1987	8.68	39.66	30.98
T-3A	A	11/30/1987	9.78	39.66	29.88
T-3A	Α	2/24/1988	9.62	39.66	30.04
T-3A	А	4/12/1988	9.30	39.66	30.36
T-3A	Α	7/26/1988	10.01	39.66	29.65
T-3A	А	10/25/1988	9.75	39.66	29.91
T-3A	А	1/10/1989	NM	39.47	NA
T-3A	A	4/3/1989	9.12	39.47	30.35
T-3A	A	9/14/1989	10.04	39.47	29.43
T-3A	A	10/10/1989	10.76	39.47	28.71
T-3A	А	1/8/1990	9.73	39.47	29.74
T-3A	A	4/6/1990	10.17	39.47	29.30
T-3A	А	7/5/1990	10.22	39.47	29.25
T-3A	А	10/9/1990	12.57	39.47	26.90
T-3A	А	1/8/1991	10.65	39.47	28.82
T-3A	A	4/9/1991	11.80	39.47	27.67
T-3A	А	7/9/1991	12.50	39.47	26.97
T-3A	A	10/7/1991	11.06	39.47	28.41
T-3A	А	1/6/1992	12.25	39.47	27.22
T-3A	А	4/6/1992	11.28	39.47	28.19
T-3A	A	7/6/1992	14.90	39.47	24.57
T-3A	A	10/29/1992	11.00	39.47	28.47
T-3A	A	1/5/1993	11.34	39.47	28.13
T-3A	A	4/5/1993	10.95	39.47	28.52
T-3A	A	7/6/1993	13.12	39.47	26.35
T-3A	A	10/15/1993	13.73	39.47	25.74

		Form	ner TRW Microwave F	acility	
			art Drive, Sunnyvale,	•	
			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-3A	А	1/11/1994	14.04	39.47	25.43
T-3A	Α	4/4/1994	13.64	39.47	25.83
T-3A	Α	7/6/1994	13.34	39.47	26.13
T-3A	Α	10/5/1994	10.72	39.47	28.75
T-3A	Α	1/10/1995	10.35	39.47	29.12
T-3A	Α	4/5/1995	9.70	39.47	29.77
T-3A	Α	7/5/1995	11.42	39.47	28.05
T-3A	Α	10/9/1995	11.73	39.47	27.74
T-3A	Α	7/10/1996	11.37	39.47	28.10
T-3A	Α	10/1/1996	11.69	39.47	27.78
T-3A	Α	4/1/1997	10.03	39.47	29.44
T-3A	Α	10/1/1997	10.82	39.04	28.22
T-3A	Α	4/1/1998	8.42	39.04	30.62
T-3A	Α	10/5/1998	6.52	39.04	32.52
T-3A	Α	4/5/1999	9.46	39.04	29.58
T-3A	Α	10/4/1999	9.69	39.04	29.35
T-3A	Α	10/2/2000	9.97	39.04	29.07
T-3A	Α	10/1/2001	9.23	39.04	29.81
T-3A	Α	10/14/2002	8.90	39.04	30.14
T-3A	Α	10/9/2003	8.07	39.04	30.97
T-3A	Α	10/4/2004	8.56	39.04	30.48
T-3A	Α	10/10/2005	7.25	39.04	31.79
T-3A	Α	10/16/2006	7.11	39.04	31.93
T-3A	Α	10/8/2007	6.78	41.74	34.96
T-3A	А	10/13/2008	7.28	41.74	34.46
T-3A	Α	10/12/2009	8.32	41.74	33.42
T-3A	A	10/11/2010	7.92	41.74	33.82
T-3A	Α	10/10/2011	7.48	41.74	34.26
T-3A	A	10/8/2012	7.59	41.74	41.74
T-3A	Α	10/14/2013	7.99	41.74	33.75
T-3A	А	4/14/2014	7.54	41.74	34.20
T-3A	Α	9/24/2014	7.68	41.74	34.06
			approval, well T-3A was		
T-6A	Α	1/15/1986	9.75	37.99	30.17
T-6A	Α	5/13/1986	9.85	37.99	28.14
T-6A	Α	7/24/1986	10.14	37.99	27.85
T-6A	Α	10/2/1987	11.63	37.99	26.36
T-6A	Α	11/30/1987	12.30	37.99	25.69
T-6A	A	2/24/1988	12.15	37.99	25.84
T-6A	Α	4/12/1988	12.61	37.99	25.38
T-6A	A	7/26/1988	12.95	37.99	25.04
T-6A	A	10/25/1988	13.35	37.99	24.64
T-6A	A	1/10/1989	13.42	37.81	24.39
T-6A	A	4/3/1989	14.34	37.81	23.47
T-6A	A	9/14/1989	14.76	37.81	23.05
T-6A	A	10/10/1989	14.92	37.81	22.89
T-6A	A	1/8/1990	15.44	37.81	22.37

T-6A

4/6/1990

22.52

			ater-Level Elevation Marer TRW Microwave F		
			art Drive, Sunnyvale,		
			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-6A	Α	7/5/1990	NM	37.81	NA
T-6A	Α	10/9/1990	16.12	37.81	21.69
T-6A	Α	1/8/1991	16.03	37.81	21.78
T-6A	Α	4/9/1991	15.33	37.81	22.48
T-6A	Α	7/9/1991	14.79	37.81	23.02
T-6A	Α	10/7/1991	15.73	37.81	22.08
T-6A	Α	1/6/1992	16.33	37.81	21.48
T-6A	Α	4/6/1992	14.47	37.81	23.34
T-6A	Α	7/6/1992	14.20	37.81	23.61
T-6A	Α	10/29/1992	13.08	37.81	24.73
T-6A	Α	1/5/1993	12.98	37.81	24.83
T-6A	Α	4/5/1993	11.63	37.81	26.18
T-6A	Α	7/6/1993	12.48	37.81	25.33
T-6A	Α	10/15/1993	11.28	37.81	26.53
T-6A	Α	1/11/1994	12.48	37.81	25.33
T-6A	Α	4/4/1994	11.90	37.81	25.91
T-6A	Α	7/6/1994	11.54	37.81	26.27
T-6A	Α	10/5/1994	10.80	37.81	27.01
T-6A	Α	1/10/1995	10.66	37.81	27.15
T-6A	Α	4/5/1995	8.89	37.81	28.92
T-6A	Α	7/5/1995	11.17	37.81	26.64
T-6A	Α	10/9/1995	11.40	37.81	26.41
T-6A	Α	7/10/1996	11.77	37.81	26.04
T-6A	Α	10/1/1996	11.69	37.81	26.12
T-6A	Α	4/1/1997	10.05	37.81	27.76
T-6A	Α	10/1/1997	11.23	37.22	25.99
T-6A	Α	4/1/1998	9.02	37.22	28.20
T-6A	Α	10/5/1998	10.17	37.22	27.05
T-6A	Α	4/5/1999	9.96	37.22	27.26
T-6A	Α	10/4/1999	10.37	37.22	26.85
T-6A	Α	10/2/2000	10.55	37.22	26.67
T-6A	Α	10/1/2001	8.40	37.22	28.82
T-6A	A	10/14/2002	8.31	37.22	28.91
T-6A	A	10/9/2003	7.29	37.22	29.93
T-6A	A	10/10/2005	8.45	37.22	28.77
T-6A	A	10/16/2006	8.21	37.22	29.01
T-6A	A	10/8/2007	8.00	39.92	31.92
T-6A	A	10/13/2008	NM	39.92	
T-6A	A	10/12/2009	8.42	39.92	31.50
T-6A	A	10/11/2010	NM	39.92	
T-6A	A	10/10/2011	NM	39.92	

NM

NM

7.90

6.05

6.20

39.92

39.92

39.57

39.57

39.57

T-6A

T-6A

T-7A

T-7A

T-7A

Α

Α

Α

Α

Α

10/12/2015

10/12/2015

1/16/1986

3/12/1986

3/14/1986

__

34.19

33.52

		Form	ner TRW Microwave F	acility			
825 Stewart Drive, Sunnyvale, California							
			Depth to Water	Top of Casing	Water-Level		
Well		Date	(feet below	Elevation	Elevation		
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)		
T-7A	Α	4/22/1986	7.80	39.57	31.77		
T-7A	А	5/13/1986	8.19	39.57	31.38		
T-7A	Α	7/24/1986	8.13	39.57	31.44		
T-7A	Α	10/2/1987	9.01	39.57	30.56		
T-7A	А	11/30/1987	9.89	39.57	29.68		
T-7A	Α	2/24/1988	10.09	39.57	29.48		
T-7A	А	4/12/1988	10.71	39.57	28.86		
T-7A	A	7/26/1988	11.22	39.57	28.35		
T-7A	A	10/25/1988	11.36	39.57	28.21		
T-7A	A	1/10/1989	11.84	39.53	27.69		
T-7A	A	4/3/1989	12.21	39.53	27.32		
T-7A	A	9/14/1989	10.17	39.53	29.36		
T-7A	A	10/10/1989	11.71	39.53	27.82		
T-7A	A	1/8/1990	15.13	39.53	24.40		
T-7A	A	4/6/1990	15.29	39.53	24.24		
T-7A	A	7/5/1990	16.19	39.53	23.34		
T-7A	A	10/9/1990	16.46	39.53	23.07		
T-7A	A	1/8/1991	17.67	39.53	21.86		
T-7A	A	4/9/1991	14.97	39.53	24.56		
T-7A	A	7/9/1991	17.39	39.53	22.14		
T-7A	A	10/9/1995	9.76	39.53	29.77		
T-7A	A	7/10/1996	10.11	39.53	29.42		
T-7A	A	10/1/1996	10.11	39.53	29.43		
T-7A	A	4/1/1997	8.60	39.53	30.93		
T-7A	A	10/1/1997	9.34	38.97	29.63		
T-7A	1		l				
	A	4/1/1998	7.46	38.97	31.51		
T-7A T-7A	A	10/5/1998 4/5/1999	8.22	38.97	30.75		
	A		8.37	38.97	30.60		
T-7A	A	10/4/1999	8.55	38.97	30.42		
T-7A	A	10/2/2000	8.41	38.97	30.56		
T-7A	A	10/1/2001	8.37	38.97	30.60		
T-7A	A	10/14/2002	8.23	39.39	31.16		
T-7A	A	10/9/2003	7.07	39.39	32.32		
T-7A	A	10/4/2004	7.68	39.39	31.71		
T-7A	A	10/10/2005	6.44	39.39	32.95		
T-7A	A	10/16/2006	6.33	39.39	33.06		
T-7A	A	10/8/2007	6.14	42.09	35.95		
T-7A	A	10/13/2008	6.54	42.09	35.55		
T-7A	A	10/12/2009	7.31	42.09	34.78		
T-7A	Α	10/11/2010	7.05	42.09	35.04		
T-7A	A	10/10/2011	6.60	42.09	35.49		
T-7A	Α	10/8/2012	6.75	42.09	35.34		
T-7A	Α	10/14/2013	7.11	42.09	34.98		
T-7A	Α	10/13/2014	6.89	42.09	35.20		
T-7A	Α	10/12/2015	7.71	42.09	34.38		
T-7A	Α	10/10/2016	7.70	42.09	34.39		
T 7A	1 .	10/0/2017	6.00	11 01	25.20		

6.36

41.84

41.84

T-7A

T-7A

Α

Α

10/9/2017

10/8/2018

35.29

	Historical Water-Level Elevation Measurements							
Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California								
	ı	825 Stew	/art Drive, Sunnyvale,	California				
	1		Dougle to Water	Top of Cooling	Water-Level			
\A/= !!		Date	Depth to Water	Top of Casing				
Well Number	7		(feet below	Elevation	Elevation			
T-8A	Zone	Measured	top of casing) 6.11	(feet, MSL) 38.36	(feet, MSL) 34.27			
T-8A	A	3/10/1986 5/13/1986	11.55	38.36	26.81			
T-8A	A	7/24/1986	13.34	38.36	25.02			
T-8A	A	10/2/1987	9.66	38.36	28.70			
T-8A	A		10.70	38.36	27.66			
T-8A	A	11/30/1987 2/24/1988	11.09	38.36	27.00			
T-8A	A		NM		NA			
		4/12/1988	1 1 1 1 1	38.36				
T-8A	A	7/26/1988	15.85	38.36	22.51			
T-8A	A	10/25/1988	14.77	38.36	23.59			
T-8A	A	1/10/1989	NM 15.06	38.32	NA 22.26			
T-8A	A	4/3/1989	15.06	38.32	23.26			
T-8A	A	9/14/1989	14.40	38.32	23.92			
T-8A	A	10/10/1989	16.67	38.32	21.65			
T-8A	A	1/8/1990	14.10	38.32	24.22			
T-8A	A	4/6/1990	15.11	38.32	23.21			
T-8A	A	7/5/1990	14.73	38.32	23.59			
T-8A	A	10/9/1990	15.46	38.32	22.86			
T-8A	A	1/8/1991	15.84	38.32	22.48			
T-8A	A	4/9/1991	14.54	38.32	23.78			
T-8A	A	7/9/1991	15.21	38.32	23.11			
T-8A	Α	10/7/1991	15.68	38.32	22.64			
T-8A	A	1/6/1992	15.40	38.32	22.92			
T-8A	Α	4/6/1992	14.76	38.32	23.56			
T-8A	Α	7/6/1992	14.08	38.32	24.24			
T-8A	A	10/29/1992	13.23	38.32	25.09			
T-8A	Α	1/5/1993	12.92	38.32	25.40			
T-8A	A	4/5/1993	15.57	38.32	22.75			
T-8A	A	7/6/1993	12.52	38.32	25.80			
T-8A	Α	10/15/1993	15.78	38.32	22.54			
T-8A	A	1/11/1994	13.97	38.32	24.35			
T-8A	A	4/4/1994	13.20	38.32	25.12			
T-8A	A	7/6/1994	12.67	38.32	25.65			
T-8A	A	10/5/1994	11.95	38.32	26.37			
T-8A	A	1/10/1995	11.91	38.32	26.41			
T-8A	A	4/5/1995	12.76	38.32	25.56			
T-8A	A	7/5/1995	15.90	38.32	22.42			
T-8A	A	10/9/1995	16.02	38.32	22.30			
T-8A	Α	7/10/1996	13.09	38.32	25.23			
T-8A	Α	10/1/1996	13.00	38.32	25.32			
T-8A	A	4/1/1997	10.95	38.32	27.37			
T-8A	Α	10/1/1997	10.95	38.32	27.37			
T-8A	Α	4/1/1998	8.21	38.32	30.11			
T-8A	Α	10/5/1998	9.27	38.32	29.05			
T-8A	Α	4/5/1999	8.75	38.32	29.57			
T-8A	Α	10/4/1999	8.88	38.32	29.44			
T-8A	A	10/2/2000	9.43	38.32	28.89			

8.10

38.32

37.68

Α

10/1/2001

10/1/2002

T-8A

T-8A

29.89

			ater-Level Elevation Marer TRW Microwave F		
			art Drive, Sunnyvale,		
			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-8A	Α	10/9/2003	7.27	37.68	30.41
T-8A	Α	10/4/2004	7.70	37.68	29.98
T-8A	Α	10/10/2005	6.48	37.68	31.20
T-8A	Α	10/16/2006	6.35	37.68	31.33
T-8A	Α	10/8/2007	6.02	40.38	34.36
T-8A	Α	10/13/2008	6.54	40.38	33.84
T-8A	Α	10/12/2009	7.50	40.38	32.88
T-8A	Α	4/5/2010	6.16	40.38	34.22
T-8A	А	10/11/2010	6.85*	40.38	33.53
T-8A	А	10/10/2011	6.68	40.38	33.70
T-8A	A	10/8/2012	6.86	40.38	33.52
T-8A	А	10/14/2013	7.25	40.38	33.13
T-8A	А	4/14/2014	6.78	40.38	33.60
T-8A	А	10/13/2014	6.67	40.38	33.71
T-8A	А	10/12/2015	7.68	40.38	32.70
T-8A	А	10/10/2016	7.47	40.38	32.91
T-8A	А	10/9/2017	6.72	40.38	33.66
T-8A	Α	10/8/2018	6.21	40.48	34.27
T-9A	Α	3/12/1986	6.12	37.22	33.10
T-9A	А	3/14/1986	13.50	37.22	23.72
T-9A	Α	3/17/1986	11.85	37.22	25.37
T-9A	Α	5/13/1986	12.12	37.22	25.10
T-9A	Α	10/2/1987	9.66	37.22	27.56
T-9A	Α	11/30/1987	11.98	37.22	25.24
T-9A	Α	2/24/1988	12.80	37.22	24.42
T-9A	Α	4/12/1988	12.01	37.22	25.21
T-9A	Α	7/26/1988	11.85	37.22	25.37
T-9A	Α	10/25/1988	12.34	37.22	24.88
T-9A	Α	1/10/1989	12.33	37.22	24.89
T-9A	Α	4/3/1989	12.54	37.22	24.68
T-9A	А	9/14/1989	13.43	37.22	23.79
T-9A	Α	10/10/1989	14.63	37.22	22.59
T-9A	Α	1/8/1990	14.09	37.22	23.13
T-9A	А	4/6/1990	14.10	37.22	23.12
T-9A	Α	7/5/1990	14.58	37.22	22.64
T-9A	A	10/9/1990	15.26	37.22	21.96
T-9A	A	1/8/1991	15.57	37.22	21.65
T-9A	A	4/9/1991	14.31	37.22	22.91
T-9A	A	7/9/1991	14.94	37.22	22.28
T-9A	A	10/7/1991	15.34	37.22	21.88
T-9A	A	1/6/1992	15.04	37.22	22.18
T-9A	A	4/6/1992	14.52	37.22	22.70
T-9A	A	7/6/1992	13.97	37.22	23.25
TOA	 '``	40/00/4000	10.07	27.22	24.24

Dry

14.12

12.80

13.26

37.22

37.22

37.22

37.22

37.22

T-9A

T-9A

T-9A

T-9A

T-9A

Α

Α

Α

Α

Α

10/29/1992

1/5/1993

4/5/1993

7/6/1993

10/15/1993

24.01

NA

23.10

24.42

			ater-Level Elevation M ner TRW Microwave F				
825 Stewart Drive, Sunnyvale, California							
			,				
			Depth to Water	Top of Casing	Water-Level		
Well		Date	(feet below	Elevation	Elevation		
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)		
T-9A	Α	1/11/1994	15.20	37.22	22.02		
T-9A	A	4/4/1994	12.93	37.22	24.29		
T-9A	Α	7/6/1994	12.85	37.22	24.37		
T-9A	А	10/5/1994	12.72	37.22	24.50		
T-9A	А	1/10/1995	11.12	37.22	26.10		
T-9A	Α	4/5/1995	8.84	37.22	28.38		
T-9A	А	7/5/1995	11.00	37.22	26.22		
T-9A	А	10/9/1995	11.33	37.22	25.89		
T-9A	Α	7/10/1996	10.67	37.22	26.55		
T-9A	А	10/1/1996	11.03	37.22	26.19		
T-9A	Α	4/1/1997	9.88	37.22	27.34		
T-9A	А	10/1/1997	11.29	37.21	25.92		
T-9A	Α	4/1/1998	8.57	37.21	28.64		
T-9A	Α	10/5/1998	9.17	37.21	28.04		
T-9A	Α	4/5/1999	10.07	37.21	27.14		
T-9A	Α	10/4/1999	9.94	37.21	27.27		
T-9A	Α	10/2/2000	11.30	37.21	25.91		
T-9A	Α	10/1/2001	8.67	37.21	28.54		
T-9A	Α	10/14/2002	8.27	37.21	28.94		
T-9A	Α	10/9/2003	7.51	37.21	29.70		
T-9A	Α	10/4/2004	7.84	37.21	29.37		
T-9A	Α	10/10/2005	6.53	37.21	30.68		
T-9A	Α	10/16/2006	6.77	36.52	23.02		
T-9A	Α	10/8/2007	6.33	39.22	32.89		
T-9A	Α	10/13/2008	6.80	39.22	32.42		
T-9A	Α	10/12/2009	7.89	39.22	31.33		
T-9A	Α	10/11/2010	7.53	39.22	31.69		
T-9A	А	10/10/2011	7.07	39.22	32.15		
T-9A	Α	10/8/2012	7.26	39.22	31.96		
T-9A	А	10/14/2013	7.71	39.22	31.51		
T-9A	А	10/13/2014	6.60	39.22	32.62		
T-9A	А	10/12/2015	7.90	39.22	31.32		
T-9A	Α	10/10/2016	7.61	39.22	31.61		
T-9A	А	10/9/2017	6.93	39.22	32.29		
T-9A	Α	10/8/2018	6.33	39.30	32.97		
T-13A	A	10/16/2006	6.58	38.06	31.48		
T-13A	A	10/8/2007	6.31	40.76	34.45		
T-13A	A	10/13/2008	6.92	40.76	33.84		
T-13A	A	10/12/2009	7.78	40.76	32.98		
T-13A	A	4/5/2010	6.38	40.76	34.38		
T-13A	A	10/11/2010	7.44	40.76	33.32		
T-13A	A	10/10/2011	7.04	40.76	33.72		
T-13A	A	10/8/2012	7.12	40.76	33.64		
T-13A	A	10/14/2013	7.49	40.76	33.27		
Τ 13Λ	1	4/14/2014	7.02	40.76	33.74		

7.01

8.06

7.99

40.76

40.76

40.76

40.76

T-13A

T-13A

T-13A

T-13A

Α

Α

Α

Α

4/14/2014

10/13/2014

10/12/2015

10/10/2016

33.74

33.75

32.70

Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California						
			Depth to Water	Top of Casing	Water-Level	
Well		Date	(feet below	Elevation	Elevation	
Vumber	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)	
T-13A	Α	10/9/2017	7.03	40.76	33.73	
T-13A	Α	10/8/2018	6.40	40.99	34.59	
T-14A	Α	10/16/2006	6.52	37.92	31.40	
T-14A	Α	10/8/2007	6.30	40.62	34.32	
T-14A	Α	10/13/2008	6.73	40.62	33.89	
T-14A	Α	10/12/2009	7.71	40.62	32.91	
T-14A	Α	4/5/2010	6.28	40.62	34.34	
T-14A	Α	10/11/2010	7.38	40.62	33.24	
T-14A	Α	10/10/2011	6.93	40.62	33.69	
T-14A	А	10/8/2012	7.07	40.62	33.55	
T-14A	A	10/14/2013	7.46	40.62	33.16	
T-14A	Α	4/14/2014	7.01	40.62	33.61	
T-14A	Α	10/13/2014	6.92	40.62	33.70	
T-14A	Α	10/12/2015	7.93	40.62	32.69	
T-14A	Α	10/10/2016	7.67	40.62	32.95	
T-14A	Α	10/9/2017	6.94	40.62	33.68	
T-14A	Α	10/8/2018	6.34	40.81	34.47	
T-15A	А	10/16/2006	6.48	37.41	30.93	
T-15A	А	10/8/2007	6.15	40.11	33.96	
T-15A	Α	10/13/2008	6.68	40.11	33.43	
T-15A	Α	10/12/2009	7.61	40.11	32.50	
T-15A	Α	10/11/2010	7.28	40.11	32.83	
T-15A	Α	10/10/2011	6.81	40.11	33.30	
T-15A	Α	10/8/2012	6.98	40.11	33.13	
T-15A	A	10/14/2013	7.38	40.11	32.73	
T-15A	Α	4/14/2014	6.92	40.11	33.19	
T-15A	Α	10/13/2014	6.72	40.11	33.39	
T-15A	А	10/12/2015	7.81	40.11	32.30	
T-15A	Α	10/10/2016	7.81	40.11	32.3	
T-15A	Α	10/9/2017	6.82	40.11	33.29	
T-15A	А	10/8/2018	6.14	40.22	34.08	
T-16A	A	10/16/2006	6.60	37.32	30.72	
T-16A	Α	10/8/2007	6.30	40.02	33.72	
T-16A	Α	10/13/2008	6.75	40.02	33.27	
T-16A	Α	10/12/2009	7.74	40.02	32.28	
T-16A	А	10/11/2010	7.36	40.02	32.66	
T-16A	А	10/10/2011	6.91	40.02	33.11	
T-16A	Α	10/8/2012	7.11	40.02	32.91	
T-16A	А	10/14/2013	7.56	40.02	32.46	
T-16A	Α	10/13/2014	6.77	40.02	33.25	
T-16A	Α	10/12/2015	7.83	40.02	32.19	
T-16A	А	10/10/2016	7.68	40.02	32.34	
T-16A	Α	10/9/2017	6.97	40.02	33.05	
T-16A	A	10/8/2018	6.23	40.12	33.89	
T-17A	A	10/14/2013	7.82	38.23	30.41	
T-17A	A	4/14/2014	7.30	38.23	30.93	
T-17A	Α	10/13/2014	7.19	38.23	31.04	
Τ 17Λ	1 .	10/12/2015	0.10	20.22	20.05	

38.23

T-17A

10/12/2015

Historical Water-Level Elevation Measurements Former TRW Microwave Facility							
825 Stewart Drive, Sunnyvale, California							
			Depth to Water	Top of Casing	Water-Level		
Well		Date	(feet below	Elevation	Elevation		
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)		
T-17A	A	10/10/2016	8.18	38.23	30.05		
T-17A	A	10/9/2017	7.25	38.23	30.98		
T-17A	A	10/8/2018	6.64	40.88	34.24		
T-18A	A	10/8/2007	6.87	10.00	01.21		
T-18A	A	9/4/2007	6.92				
T-18A	A	10/8/2018	6.94	41.20	34.26		
T-19A	A	10/8/2007	6.45	111.20	01.20		
T-19A	A	9/4/2007	6.67				
T-19A	A	10/8/2018	6.61	41.00	34.39		
T-20A	A	10/8/2017	6.32	71.00	U-1.00		
T-20A	A	9/4/2007	6.70				
T-20A	A	10/8/2018	6.43	40.86	34.43		
T-21A	A	10/8/2017	6.62	70.00	<u> </u>		
T-21A	A	9/4/2007	6.69				
T-21A	A	10/8/2018	6.73	41.20	34.47		
T-21A	A	10/8/2007	6.63	41.20	<u> </u>		
T-22A	A	9/4/2007	6.65				
T-22A	A	10/8/2018	6.16				
T-23A	A	10/8/2017	6.86				
T-23A	A	9/4/2007	6.84				
				44.44	24.25		
T-23A	A	10/8/2018	7.19	41.44	34.25		
T-24A	A	10/8/2007	6.64				
T-24A	A	9/4/2007	6.68	44.00	04.00		
T-24A	A	10/8/2018	7.09	41.29	34.20		
T-25A	A	10/8/2007	5.83				
T-25A	A	9/4/2007	5.86	40.00	04.44		
T-25A	A	10/8/2018	5.82	40.26	34.44		
36-S	A	1/15/1986	7.50	39.21	33.96		
36-S	A	3/12/1986	6.08	39.21	33.13		
36-S	A	3/14/1986	5.94	39.21	33.27		
36-S	A	4/21/1986	7.50	39.21	31.71		
36-S	A	5/13/1986	6.51	39.21	32.70		
36-S	A	7/24/1986	7.42	39.21	31.79		
36-S	A	10/2/1987	8.55	39.21	30.66		
36-S	A	11/30/1987	9.33	39.21	29.88		
36-S	A	2/24/1988	9.54	39.21	29.67		
36-S	A	4/12/1988	10.19	39.21	29.02		
36-S	A	7/26/1988	10.47	39.21	28.74		
36-S	A	10/25/1988	10.93	39.21	28.28		
36-S	A	1/10/1989	11.14	39.03	27.89		
36-S	A	4/3/1989	11.60	39.03	27.43		
36-S	Α	9/14/1989	10.79	39.03	28.24		
36-S	Α	10/10/1989	10.72	39.03	28.31		
36-S	A	1/8/1990	10.87	39.03	28.16		
36-S	Α	4/6/1990	12.64	39.03	26.39		
36-S	А	7/5/1990	13.67	39.03	25.36		
36-S	А	10/9/1990	11.33	39.03	27.70		
36-S	Α	1/8/1991	Dry	39.03	NA		

Historical Water-Level Elevation Measurements Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California

Well			Depth to Water (feet below	Top of Casing	Water-Level
		Date		Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
36-S	A	4/9/1991	13.08	39.03	25.95
36-S	A		13.93	39.03	
		7/9/1991			25.10
36-S	A	10/7/1991	14.23	39.03	24.80
36-S	A	1/6/1992	12.98	39.03	26.05
36-S	A	4/6/1992	9.36	39.03	29.67
36-S	A	7/6/1992	11.80	39.03	27.23
36-S	A	10/29/1992	11.81	39.03	27.22
36-S	A	1/5/1993	11.35	39.03	27.68
36-S	A	4/5/1993	9.66	39.03	29.37
36-S	A	7/6/1993	10.69	39.03	28.34
36-S	Α	10/15/1993	11.40	39.03	27.63
36-S	Α	1/11/1994	11.82	39.03	27.21
36-S	A	4/4/1994	11.48	39.03	27.55
36-S	Α	7/6/1994	10.90	39.03	28.13
36-S	Α	10/5/1994	9.37	39.03	29.66
36-S	A	1/10/1995	7.60	39.03	31.43
36-S	Α	4/5/1995	7.59	39.03	31.44
36-S	Α	7/5/1995	9.25	39.03	29.78
36-S	Α	10/9/1995	9.02	39.03	30.01
36-S	Α	7/10/1996	9.14	39.03	29.89
36-S	Α	10/1/1996	9.40	39.03	29.63
36-S	Α	4/1/1997	7.85	39.03	31.18
36-S	Α	Oct-97+	8.50	38.62	30.12
36-S	Α	4/1/1998	6.58	38.62	32.04
36-S	Α	10/5/1998	7.39	38.62	31.23
36-S	Α	4/5/1999	7.14	38.62	31.48
36-S	Α	10/4/1999	7.70	38.62	30.92
36-S	Α	10/2/2000	7.79	38.62	30.83
36-S	Α	10/1/2001	7.47	38.62	31.15
36-S	Α	10/14/2002	7.37	38.62	31.25
36-S	Α	10/9/2003	6.60	38.62	32.02
36-S	Α	10/4/2004	6.93	38.62	31.69
36-S	Α	10/10/2005	6.20	38.62	32.42
36-S	Α	10/16/2006	6.07	38.62	32.55
36-S	Α	10/8/2007	5.92	41.46	35.54
36-S	A	10/13/2008	6.29	41.46	35.17
36-S	A	10/12/2009	6.83	41.46	34.63
36-S	A	10/11/2010	6.65	41.46	34.81
36-S	A	10/10/2011	6.25	41.46	35.21
36-S	A	10/8/2012	DRY	41.46	
36-S	A	10/14/2013	DRY	41.46	100 FM
36-S	A	10/12/2015	7.28	41.46	34.18
36-S	A	10/10/2016	6.94	41.46	34.52
36-S	A	10/9/2017	6.40	41.46	35.06
36-S	A	10/8/2018	5.92	41.44	35.52
36-D	A	1/15/1986	7.50	39.06	33.76
36-D	A	3/10/1986	NM	39.06	NA
36-D	A	3/12/1986	5.90	39.06	33.16

Former TRW Microwave Facility							
825 Stewart Drive, Sunnyvale, California							
			Depth to Water	Top of Casing	Water-Level		
Well		Date	(feet below	Elevation	Elevation		
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)		
36-D	Α	3/14/1986	5.82	39.06	33.24		
36-D	Α	3/17/1986	NM	39.06	NA		
36-D	Α	4/21/1986	NM	39.06	NA		
36-D	А	4/22/1986	7.20	39.06	31.86		
36-D	А	4/23/1986	NM	39.06	NA		
36-D	Α	5/13/1986	7.37	39.06	31.69		
36-D	А	7/24/1986	7.32	39.06	31.74		
36-D	A	10/2/1987	8.32	39.06	30.74		
36-D	A	11/30/1987	9.08	39.06	29.98		
36-D	A	2/24/1988	9.35	39.06	29.71		
36-D	A	4/12/1988	9.96	39.06	29.10		
36-D 36-D	A	7/26/1988	10.23	39.06	28.83		
36-D 36-D	A	10/25/1988	10.23	39.06	28.32		
36-D 36-D	+	+	10.74	38.88	27.93		
	A	1/10/1989					
36-D	A	4/3/1989	11.35	38.88	27.53		
36-D	A	9/14/1989	11.71	38.88	27.17		
36-D	Α	10/10/1989	11.68	38.88	27.20		
36-D	A	1/8/1990	12.51	38.88	26.37		
36-D	A	4/6/1990	13.55	38.88	25.33		
36-D	Α	7/5/1990	13.93	38.88	24.95		
36-D	Α	10/9/1990	13.26	38.88	25.62		
36-D	Α	1/8/1991	14.83	38.88	24.05		
36-D	Α	4/9/1991	13.66	38.88	25.22		
36-D	А	7/9/1991	14.28	38.88	24.60		
36-D	Α	10/7/1991	14.51	38.88	24.37		
36-D	Α	1/6/1992	14.37	38.88	24.51		
36-D	Α	4/6/1992	10.68	38.88	28.20		
36-D	А	7/6/1992	12.52	38.88	26.36		
36-D	А	10/5/1992	11.40	38.88	27.48		
36-D	A	1/5/1993	11.67	38.88	27.21		
36-D	A	4/5/1993	11.00	38.88	27.88		
36-D	A	7/6/1993	10.60	38.88	28.28		
36-D	A	10/15/1993	11.26	38.88	27.62		
36-D	Â	1/11/1994	11.62	38.88	27.26		
36-D 36-D	A	4/4/1994	11.26	38.88	27.62		
	 	7/6/1994	l				
36-D	A		10.76	38.88	28.12		
36-D	A	10/5/1994	9.02	38.88	29.86		
36-D	A	1/10/1995	7.57	38.88	31.31		
36-D	A	4/5/1995	7.41	38.88	31.47		
36-D	A .	7/5/1995	9.03	38.88	29.85		
36-D	Α	10/9/1995	8.71	38.88	30.17		
36-D	A	7/10/1996	8.89	38.88	29.99		
36-D	Α	10/1/1996	9.16	38.88	29.72		
36-D	Α	4/1/1997	7.61	38.88	31.27		
36-D	А	Oct-97+	8.20	38.40	30.20		
36-D	А	4/1/1998	6.38	38.40	32.02		
26 D	۸ .	10/5/1009	7.10	20.40	24.24		

7.17

38.40

38.40

Α

10/5/1998

4/5/1999

36-D

36-D

31.21

Historical Water-Level Elevation Measurements Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California Depth to Water Top of Casing Water-Level

			Depth to Water (feet below	Top of Casing	Water-Level
		Date			
Well				Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
36-D	Α	10/4/1999	7.43	38.40	30.97
36-D	Α	10/2/2000	7.52	38.40	30.88
36-D	Α	10/1/2001	7.24	38.40	31.16
36-D	Α	10/14/2002	7.12	38.40	31.28
36-D	Α	10/9/2003	6.40	38.40	32.00
36-D	Α	10/4/2004	6.72	38.40	31.68
36-D	Α	10/10/2005	5.96	38.40	32.44
36-D	Α	10/16/2006	5.82	38.40	32.58
36-D	Α	10/8/2007	5.67	41.26	35.59
36-D	Α	10/13/2008	6.02	41.26	35.24
36-D	Α	10/12/2009	6.61	41.26	34.65
36-D	Α	10/11/2010	6.43	41.26	34.83
36-D	Α	10/10/2011	6.03	41.26	35.23
36-D	А	10/8/2012	6.20	41.26	35.06
36-D	Α	10/14/2013	6.44	41.26	34.82
36-D	А	10/12/2015	7.04	41.26	34.22
36-D	А	10/10/2016	6.92	41.26	34.34
36-D	Α	10/9/2017	6.18	41.26	35.08
36-D	Α	10/8/2018	5.71	41.26	35.55
37-S	A	1/15/1986	8.20	40.19	33.86
37-S	A	3/12/1986	6.42	40.19	33.77
37-S	A	3/14/1986	6.44	40.19	33.75
37-S	A	5/13/1986	8.54	40.19	31.65
37-S	А	7/24/1986	8.53	40.19	31.66
37-S	A	10/2/1987	8.53	40.19	31.66
37-S	A	11/30/1987	10.64	40.19	29.55
37-S	A	2/24/1988	10.65	40.19	29.54
37-S	A	4/12/1988	11.24	40.19	28.95
37-S	A	7/26/1988	11.92	40.19	28.27
37-S	A	10/25/1988	12.03	40.19	28.16
37-S	A	1/10/1989	12.47	39.70	27.23
37-S	A	4/3/1989	13.00	39.70	26.70
37-S	A	9/14/1989	11.73	39.70	27.97
37-S	A	10/10/1989	12.20	39.70	27.50
37-S	A	1/8/1990	Dry	39.70	NA NA
37-S	A	4/6/1990	Dry	39.70	NA NA
37-S	A	7/5/1990	Dry	39.70	NA NA
37-S	A	10/9/1990	Dry	39.70	NA NA
37-S	A	1/8/1991	Dry	39.70	NA NA
37-S	A	4/9/1991	Dry	39.70	NA NA
37-S	A	7/9/1991	Dry	39.70	NA NA
37-S	A	10/7/1991	Dry	39.70	NA NA
37-S	A	1/6/1992	Dry	39.70	NA NA
37-S	A	4/6/1992	Dry	39.70	NA NA
37-S	A	7/6/1992	Dry	39.70	NA NA
37-S	A	10/29/1992	Dry	39.70	NA NA
37-S	A	1/5/1993	Dry	39.70	NA NA
37-S	A	4/5/1993	9.80	39.70	29.90
0, 0	1 7	70/1000	0.00	1 00.70	20.00

Historical Water-Level Elevation Measurements Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California Depth to Water Top of Casing Water-Level

Well Number			Depth to Water (feet below top of casing)	Top of Casing	Water-Level
		Date		Elevation	Elevation
	Zone	Measured		(feet, MSL)	(feet, MSL)
37-S	A	7/6/1993	12.01	39.70	27.69
37-S	A	10/15/1993	11.72	39.70	27.98
37-S	A	1/11/1994	12.73	39.70	26.97
37-S	A	4/4/1994	12.46	39.70	27.24
37-S	A	7/6/1994	11.81	39.70	27.89
37-S	A	10/5/1994	10.69	39.70	29.01
37-S	A	1/10/1995	10.56	39.70	29.14
37-S	A	4/5/1995	8.34	39.70	31.36
37-S	A	7/5/1995	9.85	39.70	29.85
37-S	A	10/9/1995	9.86	39.70	29.84
37-S	A	7/10/1996	9.25	39.70	30.45
37-S	A	10/1/1996	9.67	39.70	30.03
37-S	A	4/1/1997	8.29	39.70	31.41
37-S 37-S	A	Oct-97+	9.20	39.70	30.04
37-S 37-S	A	4/1/1998	9.20 7.38	39.24 39.24	30.04
37-S 37-S	A	10/5/1998	8.42	39.24 39.24	30.82
37-S 37-S	A	4/5/1998	7.14	39.24 39.24	30.82
37-S	A	4/5/1999	8.33	39.24	30.91
37-S	A	10/4/1999	7.70	39.24	30.92
37-S	A	10/4/1999	8.36	39.24	30.88
37-S	A	10/2/2000	8.49	39.24	30.75
37-S	A	10/1/2001	8.40	39.24	30.84
37-S	A	10/14/2002	8.23	39.79	31.56
37-S	A	10/9/2003	7.38	39.79	32.41
37-S	A	10/4/2004	7.82	39.79	31.97
37-S	A	10/10/2005	6.21	39.79	33.58
37-S	A	10/16/2006	5.95	39.79	33.84
37-S	A	10/8/2007	5.60	42.06	36.46
37-S	A	10/13/2008	6.20	42.06	35.86
37-S	A	10/12/2009	7.30	42.06	34.76
37-S	A	10/11/2010	6.92	42.06	35.14
37-S	A	10/10/2011	6.43	42.06	35.63
37-S	A	10/8/2012	6.56	42.06	35.50
37-S	A	10/14/2013	7.01	42.06	35.05
37-S	A	10/12/2015	7.71	42.06	34.35
37-S	A	10/10/2016	7.58	42.06	34.48
37-S	A	10/9/2017	6.70	42.06	35.36
37-S	A	10/8/2018	6.10	42.01	35.91
38-S	A	1/15/1986	8.80	39.14	32.25
38-S	A	3/14/1986	7.34	39.14	31.80
38-S	Α	5/13/1986	9.95	39.14	29.19
38-S	A	7/24/1986	10.52	39.14	28.62
38-S	Α	10/2/1987	11.49	39.14	27.65
38-S	Α	11/30/1987	12.68	39.14	26.46
38-S	Α	2/24/1988	12.55	39.14	26.59
38-S	Α	4/12/1988	12.68	39.14	26.46
38-S	Α	7/26/1988	13.12	39.14	26.02
38-S	Α	10/25/1988	13.62	39.14	25.52

Historical Water-Level Elevation Measurements Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California Depth to Water Top of Casing Water-Level

Well			Depth to Water	Top of Casing	Water-Level
			(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
38-S	A	1/10/1989	13.68	38.85	25.17
38-S	Â	4/3/1989	13.97	38.85	24.88
38-S	A	9/14/1989	14.53	38.85	24.32
38-S	A	10/10/1989	14.32	38.85	24.53
38-S	A	1/8/1990	Dry	38.85	NA
38-S	A	4/6/1990	Dry	38.85	NA NA
38-S	A	7/5/1990	Dry	38.85	NA NA
38-S	Â	10/9/1990	Dry	38.85	NA NA
38-S	A	1/8/1991	· -	38.85	NA NA
38-S	A	4/9/1991	Dry Dry	38.85	NA NA
38-S	A	7/9/1991	<u> </u>	38.85	NA NA
	A	.	Dry		
38-S 38-S	A	10/7/1991 1/6/1992	Dry	38.85 38.85	NA NA
38-S 38-S	A	4/6/1992	Dry	38.85	NA NA
38-S	A	7/6/1992	Dry	38.85	NA NA
38-S 38-S	A	10/29/1992	Dry Dn/	38.85	NA NA
38-S	A	1/5/1993	Dry 13.97	38.85	24.88
38-S	A	4/5/1993	13.08	38.85	25.77
38-S	A		14.30	38.85	
		7/6/1993	 		24.55
38-S	A	10/15/1993	Dry	38.85	NA 24.40
38-S	A	1/11/1994	14.45	38.85	24.40
38-S	A	4/4/1994	14.19	38.85	24.66
38-S	A	7/6/1994	13.70	38.85	25.15
38-S	A	10/5/1994	9.81	38.85	29.04
38-S	A	1/10/1995	11.36	38.85	27.49
38-S	A	4/5/1995	9.50	38.85	29.35
38-S	A	7/5/1995	11.62	38.85	27.23
38-S	A	10/9/1995	12.12	38.85	26.73
38-S	A	7/10/1996	11.74	38.85	27.11
38-S	A	10/1/1996	11.91	38.85	26.94
38-S	Α	4/1/1997	10.45	38.85	28.40
38-S	A	Oct-97+	11.63	38.35	26.72
38-S	A	4/1/1998	9.15	38.35	29.20
38-S	A	10/5/1998	10.81	38.35	27.54
38-S	A	4/5/1999	10.72	38.35	27.63
38-S	A	10/4/1999	10.50	38.35	27.85
38-S	A	10/2/2000	11.21	38.35	27.14
38-S	A	10/1/2001	10.05	38.35	28.30
38-S	A	10/14/2002	9.57	38.35	28.78
38-S	A	10/9/2003	8.63	38.35	29.72
38-S	A	10/4/2004	9.12	38.35	29.23
38-S	A	10/10/2005	7.57	38.35	30.78
38-S	Α	10/16/2006	7.56	38.35	30.79
38-S	Α	10/8/2007	7.07	41.05	33.98
38-S	Α	10/13/2008	7.71	41.05	33.34
38-S	Α	10/12/2009	9.02	41.05	32.03
38-S	Α	10/11/2010	8.55	41.05	32.50
38-S	Α	10/10/2011	8.05	41.05	33.00

Historical Water-Level Elevation Measurements Former TRW Microwave Facility									
Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California									
		025 5164	vair brive, oamiyvaic,	Camornia					
			Depth to Water	Top of Casing	Water-Level				
Well		Date	(feet below	Elevation	Elevation				
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)				
38-S	Α	10/8/2012	8.25	41.05	32.80				
38-S	Α	10/14/2013	8.64	41.05	32.41				
38-S	Α	10/12/2015	8.97	41.05	32.08				
38-S	Α	10/10/2016	8.79	41.05	32.26				
38-S	Α	10/9/2017	7.92	41.05	33.13				
38-S	A	10/8/2018	7.35	41.13	33.78				
DUCTOR	A	5/13/1986	11.59	40.28	30.65				
DUCTOR	A	10/2/1987	11.50	40.28	28.78				
DUCTOR	Α	11/30/1987	NM	40.28	NA				
DUCTOR	A	2/24/1988	12.74	40.28	27.54				
DUCTOR	A	4/12/1988	12.95	40.28	27.33				
DUCTOR	A	7/26/1988	13.30	40.28	26.98				
DUCTOR	A	10/25/1988	12.33	40.28	27.95				
DUCTOR	A	1/10/1989	10.59	40.28	29.69				
DUCTOR DUCTOR	A	4/3/1989	11.63	40.28 40.28	28.65 28.73				
DUCTOR	A A	9/14/1989	11.55 12.40	40.28	27.88				
DUCTOR	A	1/8/1990	12.40	40.28	28.21				
DUCTOR	A	4/6/1990	11.89	40.28	28.39				
DUCTOR	A	7/5/1990	11.72	40.28	28.56				
DUCTOR	A	10/9/1990	12.76	40.28	27.52				
DUCTOR	A	1/8/1991	12.66	40.28	27.62				
DUCTOR	A	4/9/1991	14.99	40.28	25.29				
DUCTOR	A	7/9/1991	16.04	40.28	24.24				
DUCTOR	Α	10/7/1991	16.72	40.28	23.56				
DUCTOR	Α	1/6/1992	15.25	40.28	25.03				
DUCTOR	Α	4/6/1992	15.13	40.28	25.15				
DUCTOR	Α	7/6/1992	15.60	40.28	24.68				
DUCTOR	Α	10/29/1992	13.92	40.28	26.36				
DUCTOR	Α	1/5/1993	15.54	40.28	24.74				
DUCTOR	Α	4/5/1993	15.08	40.28	25.20				
DUCTOR	Α	7/6/1993	16.37	40.28	23.91				
DUCTOR	Α	10/15/1993	16.54	40.28	23.74				
DUCTOR	Α	1/11/1994	16.50	40.28	23.78				
DUCTOR	Α	4/4/1994	16.56	40.28	23.72				
DUCTOR	Α	7/6/1994	16.35	40.28	23.93				
EDUCTOR	Α	10/5/1994	16.24	40.28	24.04				
EDUCTOR	Α	1/10/1995	15.98	40.28	24.30				
EDUCTOR	1 A	4/5/4005	16.11	40.20	24.47				

EDUCTOR	Α	5/13/1986	11.59	40.28	30.65
EDUCTOR	Α	10/2/1987	11.50	40.28	28.78
EDUCTOR	Α	11/30/1987	NM	40.28	NA
EDUCTOR	Α	2/24/1988	12.74	40.28	27.54
EDUCTOR	Α	4/12/1988	12.95	40.28	27.33
EDUCTOR	Α	7/26/1988	13.30	40.28	26.98
EDUCTOR	Α	10/25/1988	12.33	40.28	27.95
EDUCTOR	Α	1/10/1989	10.59	40.28	29.69
EDUCTOR	Α	4/3/1989	11.63	40.28	28.65
EDUCTOR	Α	9/14/1989	11.55	40.28	28.73
EDUCTOR	Α	10/10/1989	12.40	40.28	27.88
EDUCTOR	Α	1/8/1990	12.07	40.28	28.21
EDUCTOR	Α	4/6/1990	11.89	40.28	28.39
EDUCTOR	Α	7/5/1990	11.72	40.28	28.56
EDUCTOR	Α	10/9/1990	12.76	40.28	27.52
EDUCTOR	А	1/8/1991	12.66	40.28	27.62
EDUCTOR	Α	4/9/1991	14.99	40.28	25.29
EDUCTOR	Α	7/9/1991	16.04	40.28	24.24
EDUCTOR	Α	10/7/1991	16.72	40.28	23.56
EDUCTOR	Α	1/6/1992	15.25	40.28	25.03
EDUCTOR	Α	4/6/1992	15.13	40.28	25.15
EDUCTOR	Α	7/6/1992	15.60	40.28	24.68
EDUCTOR	Α	10/29/1992	13.92	40.28	26.36
EDUCTOR	Α	1/5/1993	15.54	40.28	24.74
EDUCTOR	Α	4/5/1993	15.08	40.28	25.20
EDUCTOR	Α	7/6/1993	16.37	40.28	23.91
EDUCTOR	Α	10/15/1993	16.54	40.28	23.74
EDUCTOR	Α	1/11/1994	16.50	40.28	23.78
EDUCTOR	Α	4/4/1994	16.56	40.28	23.72
EDUCTOR	Α	7/6/1994	16.35	40.28	23.93
EDUCTOR	Α	10/5/1994	16.24	40.28	24.04
EDUCTOR	Α	1/10/1995	15.98	40.28	24.30
EDUCTOR	Α	4/5/1995	16.11	40.28	24.17
EDUCTOR	Α	7/5/1995	16.08	40.28	24.20
EDUCTOR	А	10/9/1995	16.25	40.28	24.03
EDUCTOR	Α	7/10/1996	16.37	40.28	23.91
EDUCTOR	Α	10/1/1996	NM	40.28	NA
EDUCTOR	Α	4/1/1997	15.90	40.28	24.38
EDUCTOR	А	10/1/1997	16.22	41.07	24.85
EDUCTOR	А	4/1/1998	16.09	41.07	24.98
EDUCTOR	Α	10/5/1998	11.87	41.07	29.20
EDUCTOR	А	4/5/1999	16.08	41.07	24.99
EDUCTOR EDUCTOR EDUCTOR	A A A	10/1/1997 4/1/1998 10/5/1998	16.22 16.09 11.87	41.07 41.07 41.07	

			ter-Level Elevation N		
			er TRW Microwave F art Drive, Sunnyvale,		
			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
EDUCTOR	Α	10/4/1999	15.97	41.07	25.10
EDUCTOR	A	10/2/2000	16.31	41.07	24.76
EDUCTOR	A	10/1/2001	11.27	41.07	29.80
EDUCTOR	A	10/1/2002	9.36	39.54	30.18
EDUCTOR	A	10/9/2003	8.57	39.54	30.97
EDUCTOR	A	10/4/2004	9.03	39.54	30.51
EDUCTOR	A	10/10/2005	7.89	39.54	31.65
EDUCTOR	A	10/16/2006	7.78	39.54	31.76
EDUCTOR	A	10/8/2007	7.50	42.24	34.74
EDUCTOR	A	10/13/2008	7.88	42.24	34.36
EDUCTOR	A	10/13/2009	8.81	42.24	33.43
EDUCTOR	A	10/11/2010	8.48	42.24	33.76
EDUCTOR	A	10/11/2010	8.39	42.24	33.85
EDUCTOR	A	10/8/2012	8.08	42.24	34.16
EDUCTOR	A	3 (corrected for so	8.45*	42.24	33.79
EDUCTOR	A	4/14/2014	7.89	42.24	33.79
			8.20	42.24	
EDUCTOR	Α	9/24/2014			34.04
T 4D	D4		oproval, the Eductor w		00.70
T-1B	B1	1/16/1986	7.70	37.40	29.70
T-1B	B1	3/12/1986	6.29	37.40	31.11
T-1B	B1	3/14/1986	7.47	37.40	29.93
T-1B	B1	4/21/1986	9.40	37.40	28.00
T-1B	B1	5/13/1986	8.23	37.40	29.17
T-1B	B1	7/24/1986	9.75	37.40	27.65
T-1B	B1	10/2/1987	10.45	37.40	26.95
T-1B	B1	11/30/1987	12.70	37.40	24.70
T-1B	B1	2/24/1988	12.86	37.40	24.54
T-1B	B1	4/12/1988	14.03	37.40	23.37
T-1B	B1	7/26/1988	15.21	37.40	22.19
T-1B	B1	10/25/1988	15.90	37.40	21.50
T-1B	B1	1/10/1989	15.46	39.68	24.22
T-1B	B1	4/3/1989	18.95	39.68	20.73
T-1B	B1	9/14/1989	18.23	39.68	21.45
T-1B	B1	10/10/1989	18.49	39.68	21.19
T-1B	B1	1/8/1990	20.54	39.68	19.14
T-1B	B1	4/6/1990	19.38	39.68	20.30
T-1B	B1	7/5/1990	19.92	39.68	19.76
T-1B	B1	10/9/1990	21.07	39.68	18.61
T-1B	B1	1/8/1991	21.60	39.68	18.08
T-1B	B1	4/9/1991	20.54	39.68	19.14
T-1B	B1	7/12/1991	21.05	39.68	18.63
T-1B	B1	10/7/1991	21.78	39.68	17.90
T-1B	B1	1/6/1992	20.94	39.68	18.74
T-1B	B1	4/6/1992	19.53	39.68	20.15
T-1B	B1	7/6/1992	20.38	39.68	19.30
T-1B	B1	10/5/1992	18.86	39.68	20.82
T-1R	B1	1/5/1003	20.28	30.68	10.40

20.28

18.52

39.68

39.68

T-1B

T-1B

В1

В1

1/5/1993

4/5/1993

19.40

21.16

			ater-Level Elevation I				
			ner TRW Microwave F	•			
	1	825 Stew	vart Drive, Sunnyvale	, California			
Dawith to Winters Town of Consistent Winters							
144 11		D (Depth to Water	Top of Casing	Water-Level		
Well		Date	(feet below	Elevation	Elevation		
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)		
T-1B	B1	7/6/1993	19.64	39.68	20.04		
T-1B	B1	10/15/1993	13.34	39.68	26.34		
T-1B	B1	1/11/1994	16.93	39.68	22.75		
T-1B	B1	4/4/1994	15.01	39.68	24.67		
T-1B	B1	7/6/1994	13.47	39.68	26.21		
T-1B	B1	10/5/1994	12.80	39.68	26.88		
T-1B	B1	1/10/1995	12.60	39.68	27.08		
T-1B	B1	4/5/1995	10.95	39.68	28.73		
T-1B	B1	7/5/1995	13.86	39.68	25.82		
T-1B	B1	10/9/1995	12.84	39.68	26.84		
T-1B	B1	7/10/1996	13.97	39.68	25.71		
T-1B	B1	10/1/1996	14.51	39.68	25.17		
T-1B	B1	4/1/1997	11.88	39.53	27.65		
T-1B	B1	10/1/1997	12.90	39.02	26.12		
T-1B	B1	4/1/1998	10.56	39.02	28.46		
T-1B	B1	10/5/1998	11.66	39.02	27.36		
T-1B	B1	4/5/1999	11.87	39.02	27.15		
T-1B	B1	10/4/1999	11.46	39.02	27.56		
T-1B	B1	10/2/2000	13.09	39.02	25.93		
T-1B	B1	10/1/2001	11.54	39.02	27.48		
T-1B	B1	10/14/2002	10.99	39.02	28.03		
T-1B	B1	10/9/2003	9.31	39.02	29.71		
	Per W	later Board appro	val, well 1B was aband	loned in February 2004.			
T-2B	B1	3/14/1986	9.19	39.69	33.04		
T-2B	B1	5/13/1986	26.24	39.69	13.45		
T-2B	B1	7/24/1986	19.23	39.69	20.46		
T-2B	B1	10/2/1987	20.46	39.69	19.23		
T-2B	B1	11/30/1987	25.89	39.69	13.80		
T-2B	B1	2/24/1988	26.00	39.69	13.69		
T-2B	B1	4/12/1988	24.56	39.69	15.13		
T-2B	B1	7/26/1988	23.00	39.69	16.69		
T-2B	B1	10/25/1988	26.29	39.69	13.40		
T-2B	B1	1/10/1989	26.07	39.67	13.60		
T-2B	B1	4/3/1989	23.84	39.67	15.83		
T-2B	B1	9/14/1989	23.42	39.67	16.25		
T-2B	B1	10/10/1989	23.53	39.67	16.14		
T-2B	B1	1/8/1990	22.99	39.67	16.68		
T-2B	B1	4/6/1990	24.96	39.67	14.71		
T-2B	B1	7/5/1990	29.13	39.67	10.54		
T-2B	B1	10/9/1990	23.96	39.67	15.71		
T-2B	B1	1/8/1991	24.32	39.67	15.35		
T-2B	B1	4/9/1991	24.75	39.67	14.92		
T-2B	B1	7/12/1991	24.67	39.67	15.00		
T-2B	B1	10/7/1991	29.98	39.67	9.69		
T-2B	B1	1/6/1992	16.95	39.67	22.72		
T-2B	B1	4/6/1992	27.36	39.67	12.31		
T-2B	B1	7/6/1992	15.70	39.67	23.97		
1 20	1 0'	170/1002	10.70	00.07	20.01		

			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-2B	B1	1/5/1993	24.65	39.67	15.02
T-2B	B1	4/5/1993	24.94	39.67	14.73
T-2B	B1	7/6/1993	26.50	39.67	13.17
T-2B	B1	10/15/1993	22.98	39.67	16.69
T-2B	B1	1/11/1994	21.31	39.67	18.36
T-2B	B1	4/4/1994	26.18	39.67	13.49
T-2B	B1	7/6/1994	21.36	39.67	18.31
T-2B	B1	10/5/1994	25.32	39.67	14.35
T-2B	B1	1/10/1995	26.98	39.67	12.69
T-2B	B1	4/5/1995	10.75	39.67	28.92
T-2B	B1	7/5/1995	22.58	39.67	17.09
T-2B	B1	10/9/1995	25.44	39.67	14.23
T-2B	B1	7/10/1996	23	39.67	16.67
T-2B	B1	10/1/1996	14.08	39.67	25.59
T-2B	B1	4/1/1997	26.15	39.67	13.52
T-2B	B1	10/1/1997	NM	39.24	NA
T-2B	B1	4/1/1998	25.58	39.24	13.66
T-2B	B1	10/5/1998	11.89	39.24	27.35
T-2B	B1	4/5/1999	Dry	39.24	NA
T-2B	B1	10/4/1999	25.48	39.24	13.76
T-2B	B1	10/2/2000	10.76	39.24	28.48
T-2B	B1	10/1/2001	9.76	39.24	29.48
T-2B	B1	10/1/2002	9.79	39.53	29.74
T-2B	B1	10/9/2003	8.56	39.53	30.97
T-2B	B1	10/4/2004	9.04	39.53	30.49
T-2B	B1	10/10/2005	7.71	39.53	31.82
T-2B	B1	10/16/2006	7.57	39.53	31.96
T-2B	B1	10/8/2007	7.29	42.23	34.94
T-2B	B1	10/13/2008	8.05	42.23	34.18
T-2B	B1	10/12/2009	8.82	42.23	33.41
T-2B	B1	10/11/2010	8.41	42.23	33.82
T-2B	B1	10/10/2011	7.89	42.23	34.34
T-2B	B1	10/8/2012	8.08	42.23	34.15
T-2B	B1	10/13/2013	8.36	42.23	33.87
T-2B	B1	4/14/2014	7.91	42.23	34.32
T-2B	B1	9/24/2014	8.18	42.23	34.05
1 20			approval, well T-2B wa		07.00
T-4B	B1	1/16/1986	9.30	38.96	31.63
T-4B	B1	3/14/1986	12.96	38.96	26.00
T-4B	B1	4/21/1986	15.60	38.96	23.36
T-4B	B1	5/13/1986	11.51	38.96	27.45
T-4B	B1	7/24/1986	15.88	38.96	23.08
T-4B	B1	10/2/1987	15.32	38.96	23.64
T-4B	B1	11/30/1987	19.59	38.96	19.37
T-4B	B1	2/24/1988	18.67	38.96	20.29
	1	+			19.33
T-4B	B1	4/12/1988	19.63	38.96	
T-4B	B1 B1	7/26/1988 10/25/1988	19.87 20.98	38.96 38.96	19.09 17.98

Well		Date	Depth to Water (feet below	Top of Casing	Water-Level Elevation
				Elevation	
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-4B	B1	1/10/1989	20.75	38.70	17.95
T-4B	B1	4/3/1989	20.95	38.70	17.75
T-4B	B1	9/14/1989	19.64	38.70	19.06
T-4B	B1	10/10/1989	19.50	38.70	19.20
T-4B	B1	1/8/1990	21.53	38.70	17.17
T-4B	B1	4/6/1990	20.47	38.70	18.23
T-4B	B1	7/5/1990	NM	38.70	NA
T-4B	B1	10/9/1990	22.95	38.70	15.75
T-4B	B1	1/8/1991	23.04	38.70	15.66
T-4B	B1	4/9/1991	22.69	38.70	16.01
T-4B	B1	7/9/1991	23.36	38.70	15.34
T-4B	B1	10/7/1991	24.44	38.70	14.26
T-4B	B1	1/6/1992	22.57	38.70	16.13
T-4B	B1	4/6/1992	21.83	38.70	16.87
T-4B	B1	7/6/1992	22.19	38.70	16.51
T-4B	B1	10/5/1992	20.42	38.70	18.28
T-4B	B1	1/5/1993	22.31	38.70	16.39
T-4B	B1	4/5/1993	21.46	38.70	17.24
T-4B	B1	7/6/1993	22.40	38.70	16.30
T-4B	B1	10/15/1993	19.84	38.70	18.86
T-4B	B1	1/11/1994	22.61	38.70	16.09
T-4B	B1	4/4/1994	22.16	38.70	16.54
T-4B	B1	7/6/1994	20.57	38.70	18.13
T-4B	B1	10/5/1994	17.33	38.70	21.37
T-4B	B1	1/10/1995	16.87	38.70	21.83
T-4B	B1	4/5/1995	14.26	38.70	24.44
T-4B	B1	7/5/1995	16.33	38.70	22.37
T-4B	B1	10/9/1995	16.75	38.70	21.95
T-4B	B1	7/10/1996	16.78	38.70	21.92
T-4B	B1	10/1/1996	18.70	38.70	20.00
T-4B	B1	4/1/1997	15.63	38.70	23.07
T-4B	B1	10/1/1997	15.89	38.23	22.34
T-4B	B1	4/1/1998	12.93	38.23	25.30
T-4B	B1	10/5/1998	13.89	38.23	24.34
T-4B	B1	4/5/1999	16.11	38.23	22.12
T-4B	B1	10/4/1999	14.07	38.23	24.16
T-4B	B1	10/2/2000	16.43	38.23	21.80
T-4B	B1	10/1/2001	13.36	38.23	24.87
T-4B	B1	10/14/2002	12.39	38.23	25.84
T-4B	B1	10/9/2003	11.00	38.23	27.23
T-4B	B1	10/4/2004	10.91	38.23	27.32
T-4B	B1	10/10/2005	8.32	38.23	29.91
T-4B	B1	10/16/2006	8.07	38.23	30.16
T-4B	B1	10/10/2000	7.60	40.93	33.33
T-4B	B1	10/13/2008	8.98	40.93	31.95
T-4B	B1	10/13/2008	10.71	40.93	30.22
T-4B	B1	10/12/2009		40.93	31.07
T-4B	B1	10/11/2010	9.86 9.16	40.93	31.07

		Depth to Water Date (feet below	Depth to Water	Top of Casing	Water-Level Elevation
Well			(feet below	Elevation	
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-4B	B1	10/8/2012	9.38	40.93	31.55
T-4B	B1	10/14/2013	9.71	40.93	31.22
T-4B	B1	10/13/2014	9.00	40.93	31.93
T-4B	B1	10/12/2015	10.10	40.93	30.83
T-4B	B1	10/10/2016	9.47	40.93	31.46
T-4B	B1	10/9/2017	8.51	40.93	32.42
T-4B	B1	10/8/2018	7.79	40.98	33.19
T-5B	B1	1/16/1986	10.00	40.67	32.45
T-5B	B1	3/14/1986	10.37	40.67	30.30
T-5B	B1	4/23/1986	11.20	40.67	29.47
T-5B	B1	5/13/1986	10.11	40.67	30.56
T-5B	B1	7/24/1986	10.86	40.67	29.81
T-5B	B1	10/2/1987	15.75	40.67	24.92
T-5B	B1	11/30/1987	17.12	40.67	23.55
T-5B	B1	2/24/1988	16.62	40.67	24.05
T-5B	B1	4/12/1988	19.20	40.67	21.47
T-5B	B1	7/26/1988	18.63	40.67	22.04
T-5B	B1	10/25/1988	20.71	40.67	19.96
T-5B	B1	1/10/1989	20.80	39.67	18.87
T-5B	B1	4/3/1989	20.55	39.67	19.12
T-5B	B1	9/14/1989	21.12	39.67	18.55
T-5B	B1	10/10/1989	21.03	39.67	18.64
T-5B	B1	1/8/1990	21.85	39.67	17.82
T-5B	B1	4/6/1990	22.92	39.67	16.75
T-5B	B1	7/5/1990	23.06	39.67	16.61
T-5B	B1	10/9/1990	22.87	39.67	16.80
T-5B	B1	1/8/1991	23.27	39.67	16.40
T-5B	B1	4/9/1991	22.81	39.67	16.86
T-5B	B1	7/12/1991	23.00	39.67	16.67
T-5B	B1	10/7/1991	23.79	39.67	15.88
T-5B	B1	1/6/1992	23.07	39.67	16.60
T-5B	B1	4/6/1992	20.59	39.67	19.08
T-5B	B1	7/6/1992	20.80	39.67	18.87
T-5B	B1	10/5/1992	17.55	39.67	22.12
T-5B	B1	1/5/1993	19.04	39.67	20.63
T-5B	B1	4/5/1993	21.24	39.67	18.43
T-5B	B1	7/6/1993	21.08	39.67	18.59
T-5B	B1	10/15/1993	20.65	39.67	19.02
T-5B	B1	1/11/1994	22.15	39.67	17.52
T-5B	B1	4/4/1994	21.13	39.67	18.54
T-5B	B1	7/6/1994	20.93	39.67	18.74
T-5B	B1	10/5/1994	18.77	39.67	20.90
T-5B	B1	1/10/1995	18.75	39.67	20.92
T-5B	B1	4/5/1995	17.70	39.67	21.97
T-5B	B1	7/5/1995	18.75	39.67	20.92
T-5B	B1	10/9/1995	18.24	39.67	21.43
T-5B	B1	7/10/1996	20.65	39.67	19.02
T-5B	B1	10/1/1996	20.60	39.67	19.02

			Depth to Water	Top of Casing	Water-Level Elevation
Well			(feet below	Elevation	
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-5B	B1	4/1/1997	17.28	39.67	22.39
T-5B	B1	10/1/1997	17.32	39.21	21.89
T-5B	B1	4/1/1998	15.45	39.21	23.76
T-5B	B1	10/5/1998	17.77	39.21	21.44
T-5B	B1	4/5/1999	19.38	39.21	19.83
T-5B	B1	10/4/1999	10.46	39.21	28.75
T-5B	B1	10/2/2000	19.25	39.21	19.96
T-5B	B1	10/1/2001	14.99	39.21	24.22
T-5B	B1	10/14/2002	15.43	39.75	24.32
T-5B	B1	10/9/2003	13.95	39.75	25.80
T-5B	B1	10/4/2004	13.70	39.75	26.05
T-5B	B1	10/10/2005	6.17	39.75	33.58
T-5B	B1	10/16/2006	5.31	39.75	34.44
T-5B	B1	10/8/2007	4.99	42.45	37.46
T-5B	B1	10/13/2008	15.72	42.45	26.73
T-5B	B1	10/12/2009	14.55	42.45	27.90
T-5B	B1	10/11/2010	10.45	42.45	32.00
T-5B	B1	10/10/2011	10.04	42.45	32.41
T-5B	B1	10/8/2012	10.33	42.45	32.12
T-5B	B1	10/14/2013	9.99	42.45	32.46
T-5B	B1	10/13/2014	9.62	42.45	32.83
T-5B	B1	10/12/2015	10.06	42.45	32.39
T-5B	B1	10/10/2016	9.44	42.45	33.01
T-5B	B1	10/9/2017	8.41	42.45	34.04
T-5B	B1	10/8/2018	7.63	41.95	34.32
T-7B	B1	1/16/1986	9.70	39.43	32.31
T-7B	B1	3/12/1986	8.16	39.43	31.27
T-7B	B1	3/14/1986	9.90	39.43	29.53
T-7B	B1	4/22/1986	11.00	39.43	28.43
T-7B	B1	5/13/1986	9.65	39.43	29.78
T-7B	B1	7/24/1986	10.75	39.43	28.68
T-7B	B1	10/2/1987	13.98	39.43	25.45
T-7B	B1	11/30/1987	15.75	39.43	23.68
T-7B	B1	2/24/1988	15.21	39.43	24.22
T-7B	B1	4/12/1988	16.83	39.43	22.60
T-7B	B1	7/26/1988	16.37	39.43	23.06
T-7B	B1	10/25/1988	18.16	39,43	21.27
T-7B	B1	1/10/1989	17.82	39.44	21.62
T-7B	B1	4/3/1989	16.99	39,44	22.45
T-7B	B1	9/14/1989	19.35	39.44	20.09
T-7B	B1	10/10/1989	19.60	39.44	19.84
T-7B	B1	1/8/1990	20.56	39.44	18.88
T-7B	B1	4/6/1990	20.37	39.44	19.07
T-7B	B1	7/5/1990	21.16	39.44	18.28
T-7B	B1	10/9/1990	20.79	39.44	18.65
T-7B	B1	1/8/1991	21.01	39.44	18.43
T-7B	B1	4/9/1991	20.48	39.44	18.96
T-7B	B1	7/12/1991	20.77	39.44	18.67

Well			Depth to Water	Top of Casing	Water-Level Elevation
			(feet below	Elevation	
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-7B	B1	10/7/1991	21.77	39.44	17.67
T-7B	B1	1/6/1992	20.98	39.44	18.46
T-7B	B1	4/6/1992	17.20	39.44	22.24
T-7B	B1	7/6/1992	17.63	39.44	21.81
T-7B	B1	10/5/1992	16.52	39.44	22.92
T-7B	B1	1/5/1993	19.15	39.44	20.29
T-7B	B1	4/5/1993	18.53	39.44	20.91
T-7B	B1	7/6/1993	17.95	39.44	21.49
T-7B	B1	10/15/1993	16.60	39.44	22.84
T-7B	B1	1/11/1994	19.20	39.44	20.24
T-7B	B1	4/4/1994	17.90	39.44	21.54
T-7B	B1	7/6/1994	17.76	39.44	21.68
T-7B	B1	10/5/1994	15.67	39.44	23.77
T-7B	B1	1/10/1995	15.45	39.44	23.99
T-7B	B1	4/5/1995	13.99	39.44	25.45
T-7B	B1	7/5/1995	15.71	39.44	23.73
T-7B	B1	10/9/1995	14.50	39.44	24.94
T-7B	B1	7/10/1996	16.35	39.44	23.09
T-7B	B1	10/1/1996	16.68	39.44	22.76
T-7B	B1	4/1/1997	14.22	39.44	25.22
T-7B	B1	10/1/1997	14.34	38.87	24.53
T-7B	B1	4/1/1998	12.54	38.87	26.33
T-7B	B1	10/5/1998	13.62	38.87	25.25
T-7B	B1	4/5/1999	14.74	38.87	24.13
T-7B	B1	10/4/1999	11.31	38.87	27.56
T-7B	B1	10/2/2000	14.68	38.87	24.19
T-7B	B1	10/1/2001	12.67	38.87	26.20
T-7B	B1	10/14/2002	12.24	39.31	27.07
T-7B	B1	10/9/2003	8.62	39.31	30.69
T-7B	B1	10/4/2004	9.35	39.31	29.96
T-7B	B1	10/10/2005	5.61	39.31	33.70
T-7B	B1	10/16/2006	5.14	39.31	34.17
T-7B	B1	10/8/2007	4.93	42.01	37.08
T-7B	B1	10/13/2008	8.76	42.01	33.25
T-7B	B1	10/12/2009	8.47	42.01	33.54
T-7B	B1	10/11/2010	7.94*	42.01	34.07
T-7B	B1	10/10/2011	6.39	42.01	35.62
T-7B	B1	10/8/2012	6.55	42.01	35.46
T-7B	B1	10/14/2013	6.73	42.01	35.28
T-7B	B1	10/13/2014	6.64	42.01	35.37
T-7B	B1	10/12/2015	7.57	42.01	34.44
T-7B	B1	10/10/2016	7.63	42.01	34.38
T-7B	B1	10/9/2017	5.61	42.01	36.4
T-7B	B1	10/8/2018	4.97	41.75	36.78
T-8B	B1	3/10/1986	6.41	38.34	33.92
T-8B	B1	3/17/1986	24.30	38.34	14.04
T-8B	B1	5/13/1986	23.50	38.34	14.84
T-8B	B1	7/24/1986	10.24	38.34	28.10

			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-8B	B1	10/2/1987	21.02	38.34	17.32
T-8B	B1	11/30/1987	11.15	38.34	27.19
T-8B	B1	2/24/1988	30.26	38.34	8.08
T-8B	B1	4/12/1988	26.35	38.34	11.99
T-8B	B1	7/26/1988	12.47	38.34	25.87
T-8B	B1	10/25/1988	24.34	38.34	14.00
T-8B	B1	1/10/1989	NM	38.30	NA
T-8B	B1	4/3/1989	24.65	38.30	13.65
T-8B	B1	9/14/1989	22.32	38.30	15.98
T-8B	B1	10/10/1989	13.86	38.30	24.44
T-8B	B1	1/8/1990	14.56	38.30	23.74
T-8B	B1	4/6/1990	26.09	38.30	12.21
T-8B	B1	7/5/1990	24.13	38.30	14.17
T-8B	B1	10/9/1990	23.80	38.30	14.50
T-8B	B1	1/8/1991	24.15	38.30	14.15
T-8B	B1	4/9/1991	25.41	38.30	12.89
T-8B	B1	7/12/1991	24.89	38.30	13.41
T-8B	B1	10/7/1991	27.44	38.30	10.86
T-8B	B1	1/6/1992	16.06	38.30	22.24
T-8B	B1	4/6/1992	20.11	38.30	18.19
T-8B	B1	7/6/1992	16.34	38.30	21.96
T-8B	B1	10/5/1992	14.51	38.30	23.79
T-8B	B1	1/5/1993	14.67	38.30	23.63
T-8B	B1	4/5/1993	24.44	38.30	13.86
T-8B	B1	7/6/1993	13.10	38.30	25.20
T-8B	B1	10/15/1993	21.81	38.30	16.49
T-8B	B1	1/11/1994	25.92	38.30	12.38
T-8B	B1	4/4/1994	23.25	38.30	15.05
T-8B	B1	7/6/1994	24.00	38.30	14.30
T-8B	B1	10/5/1994	25.92	38.30	12.38
T-8B	B1	1/10/1995	29.36	38.30	8.94
T-8B	B1	4/5/1995	31.59	38.30	6.71
T-8B	B1	7/5/1995	11.11	38.30	27.19
T-8B	B1	10/9/1995	31.00	38.30	7.30
T-8B	B1	7/10/1996	10.97	38.30	27.33
T-8B	B1	10/1/1996	30.87	38.30	7.43
T-8B	B1	4/1/1997	28.40	38.30	9.90
T-8B	B1	10/1/1997	13.44	38.30	24.86
T-8B	B1	4/1/1998	13.83	38.30	24.47
T-8B	B1	10/5/1998	14.77	38.30	23.53
T-8B	B1	4/5/1999	15.83	38.30	22.47
T-8B	B1	10/4/1999	14.37	38.30	23.93
T-8B	B1	10/2/2000	9.68	38.30	28.62
T-8B	B1	10/1/2001	8.64	38.30	29.66
T-8B	B1	10/1/2001	8.23	37.63	29.40
T-8B	B1	10/1/2002	7.34	37.63	30.29
T-8B	B1	10/4/2004	7.75	37.63	29.88
T-8B	B1	10/10/2005	6.46	37.63	31.17

	+	 	Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-8B	B1	10/16/2006	6.35	37.63	31.28
T-8B	B1	10/16/2006	6.05	40.33	34.28
T-8B	B1	10/13/2007	6.68	40.33	33.65
T-8B	B1			40.33	32.73
		10/12/2009	7.60		
T-8B	B1	10/11/2010	7.21	40.33	33.12
T-8B	B1	10/10/2011	6.74	40.33	33.59
T-8B	B1	10/8/2012	6.93	40.33	33.40
T-8B	B1	10/14/2013	7.31	40.33	33.02
T-8B	B1	10/13/2014	6.67	40.33	33.66
T-8B	B1	10/12/2015	7.72	40.33	32.61
T-8B	B1	10/10/2016	7.46	40.33	32.87
T-8B	B1	10/9/2017	6.71	40.33	33.62
T-8B	B1	10/8/2018	6.01	40.43	34.42
T-9B	B1	3/12/1986	6.75	37.14	32.14
T-9B	B1	3/14/1986	24.45	37.14	12.69
T-9B	B1	3/17/1986	24.25	37.14	12.89
T-9B	B1	5/13/1986	8.94	37.14	28.20
T-9B	B1	7/24/1986	27.67	37.14	9.47
T-9B	B1	10/2/1987	12.15	37.14	24.99
T-9B	B1	11/30/1987	19.34	37.14	17.80
T-9B	B1	2/24/1988	21.99	37.14	15.15
T-9B	B1	4/12/1988	23.50	37.14	13.64
T-9B	B1	7/26/1988	24.97	37.14	12.17
T-9B	B1	10/25/1988	26.65	37.14	10.49
T-9B	B1	1/10/1989	24.33	37.11	12.78
T-9B	B1	4/3/1989	23.66	37.11	13.45
T-9B	B1	9/14/1989	17.32	37.11	19.79
T-9B	B1	10/10/1989	21.48	37.11	15.63
T-9B	B1	1/8/1990	25.75	37.11	11.36
T-9B	B1	4/6/1990	20.54	37.11	16.57
T-9B	B1	7/5/1990	18.31	37.11	18.80
T-9B	B1	10/9/1990	31.99	37.11	5.12
T-9B	B1	1/8/1991	23.99	37.11	13.12
T-9B	B1	4/9/1991	22.70	37.11	14.41
T-9B	B1	7/12/1991	31.91	37.11	5.20
T-9B	B1	10/7/1991	Dry	37.11	NA
T-9B	B1	1/6/1992	31.80	37.11	5.31
T-9B	B1	4/6/1992	30.91	37.11	6.20
T-9B	B1	7/6/1992	31.47	37.11	5.64
T-9B	B1	10/5/1992	29.77	37.11	7.34
T-9B	B1	1/5/1993	29.41	37.11	7.70
T-9B	B1	4/5/1993	28.91	37.11	8.20
T-9B	B1	7/6/1993	30.58	37.11	6.53
T-9B	B1	10/15/1993	26.50	37.11	10.61
T-9B	B1	1/11/1994	29.42	37.11	7.69
T-9B	B1	4/4/1994	28.23	37.11	8.88
		 	<u> </u>		
T-9B	B1	7/6/1994	20.45	37.11	16.66
T-9B	B1	10/5/1994	22.64	37.11	14.47

Well	I	· · · · · · · · · · · · · · · · · · ·	Depth to Water	Top of Casing	Water-Level Elevation
			(feet below	Elevation	
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-9B	B1	1/10/1995	16.34	37.11	20.77
T-9B	B1	4/5/1995	13.00	37.11	24.11
T-9B	B1	7/5/1995	16.40	37.11	20.71
T-9B	B1	10/9/1995	14.82	37.11	22.29
T-9B	B1	7/10/1996	16.43	37.11	20.68
T-9B	B1	10/1/1996	16.98	37.11	20.13
T-9B	B1	4/1/1997	14.57	37.01	22.44
T-9B	B1	10/1/1997	15.82	37.32	21.50
T-9B	B1	4/1/1998	13.83	37.32	23.49
T-9B	B1	10/5/1998	12.62	37.32	24.70
T-9B	B1	4/5/1999	16.40	37.32	20.92
T-9B	B1	10/4/1999	14.94	37.32	22.38
T-9B	B1	10/4/1999	18.41	37.32	18.91
T-9B	B1	10/2/2000	11.73	37.32	25.59
T-9B	B1	10/1/2001	11.73	37.32	26.01
T-9B	B1	10/14/2002	10.20	37.32	27.12
T-9B	B1		9.68	37.32	27.64
		10/4/2004			
T-9B	B1	10/10/2005	7.65	37.32	29.67
T-9B	B1	10/16/2006	7.50	36.19	28.69
T-9B	B1	10/8/2007	6.97	38.89	31.92
T-9B	B1	10/13/2008	8.87	38.89	30.02
T-9B	B1	10/12/2009	9.43	38.89	29.46
T-9B	B1	10/11/2010	8.69	38.89	30.20
T-9B	B1	10/10/2011	8.14	38.89	30.75
T-9B	B1	10/8/2012	8.30	38.89	30.59
T-9B	B1	10/14/2013	8.61	38.89	30.28
T-9B	B1	10/13/2014	7.91	38.89	30.98
T-9B	B1	10/12/2015	8.91	38.89	29.98
T-9B	B1	10/10/2016	7.46	38.89	31.43
T-9B	B1	10/9/2017	7.39	38.89	31.50
T-9B	B1	10/8/2018	6.79	38.95	32.16
T-10B	B1	10/1/2001	8.81	37.39	28.58
T-10B	B1	10/14/2002	8.44	37.39	28.95
T-10B	B1	10/9/2003	7.41	37.39	29.98
T-10B	B1	10/4/2004	7.86	37.39	29.53
T-10B	B1	10/10/2005	6.62	37.39	30.77
T-10B	B1	10/16/2006	6.56	37.39	30.83
T-10B	B1	10/8/2007	6.19	40.09	33.90
T-10B	B1	10/13/2008	6.81	40.09	33.28
T-10B	B1	10/12/2009	7.76	40.09	32.33
T-10B	B1	10/11/2010	7.05*	40.09	33.04
T-10B	B1	10/10/2011	6.82	40.09	33.27
T-10B	B1	10/8/2012	7.12	40.09	32.97
T-10B	B1	10/14/2013	7.52	40.09	32.57
T-10B	B1	10/13/2014	6.81	40.09	33.28
T-10B	B1	10/14/2015	7.9	40.09	32.19
T-10B	B1	10/10/2016	7.63	40.09	32.46
T-10B	B1	10/9/2017	6.88	40.09	33.21

	Historical Water-Level Elevation Measurements Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California									
		023 Stew	vart Drive, Sunnyvale,	California						
			Depth to Water	Top of Casing	Water-Level					
Well	1	Date	(feet below	Elevation	Elevation					
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)					
T-10B	B1	10/8/2018	6.19	40.13	33.94					
T-17B	B1	10/16/2006	6.51	37.91	31.40					
T-17B	B1	10/8/2007	6.11	40.61	34.50					
T-17B	B1	10/13/2008	7.12	40.61	33.49					
T-17B	B1	10/12/2009	8.36	40.61	32.25					
T-17B	B1	10/11/2010	7.80	40.61	32.81					
T-17B	B1	10/10/2011	7.27	40.61	33.34					
T-17B	B1	10/8/2012	7.20	40.61	33.41					
T-17B	B1	10/14/2013	7.92	40.61	32.69					
T-17B	B1	4/14/2014	7.42	40.61	33.19					
T-17B	B1	10/13/2014	7.30	40.61	33.31					
T-17B	B1	10/12/2015	7.97	40.61	32.64					
T-17B	B1	10/10/2016	8.00	40.61	32.61					
T-17B	B1	10/9/2017	7.22	40.61	33.39					
T-17B	B1	10/8/2018	6.41	40.72	34.31					
T-18B	B1	10/14/2013	6.28	38.78	32.50					
T-18B	B1	10/13/2014	6.34	38.78	32.44					
T-18B	B1	10/12/2015	7.13	38.78	31.65					
T-18B	B1	10/10/2016	6.48	38.78	32.30					
T-18B	B1	10/9/2017	5.29	38.78	33.49					
T-18B	B1	10/8/2018	4.73	41.41	36.68					
T-19B	B1	10/14/2013	7.20	38.72	31.52					
T-19B	B1	10/13/2014	7.38	38.72	31.34					
T-19B	B1	10/12/2015	8.14	38.72	30.58					
T-19B	B1	10/10/2016	6.59	38.72	32.13					
T-19B	B1	10/9/2017	5.54	38.72	33.18					
T-19B	B1	10/8/2018	5.33	41.37	36.04					
T-20B	B1	10/8/2018	4.70	40.65	35.95					
T-21B	B1	10/8/2018	6.71	41.53	34.82					
T-22B	B1	10/8/2018	5.88	39.13	33.25					
T-23B	B1	10/8/2018	6.10	39.28	33.18					
T-24B	B1	10/8/2018	7.03	39.19	32.16					
T-2C	B2	7/24/1986	29.65	39.40	11.73					
T-2C	B2	10/29/1987	25.15	39.40	14.25					

		8		ł	
T-17B	B1	10/8/2012	7.20	40.61	33.41
T-17B	B1	10/14/2013	7.92	40.61	32.69
T-17B	B1	4/14/2014	7.42	40.61	33.19
T-17B	B1	10/13/2014	7.30	40.61	33.31
T-17B	B1	10/12/2015	7.97	40.61	32.64
T-17B	B1	10/10/2016	8.00	40.61	32.61
T-17B	B1	10/9/2017	7.22	40.61	33.39
T-17B	B1	10/8/2018	6.41	40.72	34.31
T-18B	B1	10/14/2013	6.28	38.78	32.50
T-18B	B1	10/13/2014	6.34	38.78	32.44
T-18B	B1	10/12/2015	7.13	38.78	31.65
T-18B	B1	10/10/2016	6.48	38.78	32.30
T-18B	B1	10/9/2017	5.29	38.78	33.49
T-18B	B1	10/8/2018	4.73	41.41	36.68
T-19B	B1	10/14/2013	7.20	38.72	31.52
T-19B	B1	10/13/2014	7.38	38.72	31.34
T-19B	B1	10/12/2015	8.14	38.72	30.58
T-19B	B1	10/10/2016	6.59	38.72	32.13
T-19B	B1	10/9/2017	5.54	38.72	33.18
T-19B	B1	10/8/2018	5.33	41.37	36.04
T-20B	B1	10/8/2018	4.70	40.65	35.95
T-21B	B1	10/8/2018	6.71	41.53	34.82
T-22B	B1	10/8/2018	5.88	39.13	33.25
T-23B	B1	10/8/2018	6.10	39.28	33.18
T-24B	B1	10/8/2018	7.03	39.19	32.16
T-2C	B2	7/24/1986	29.65	39.40	11.73
T-2C	B2	10/29/1987	25.15	39.40	14.25
T-2C	B2	11/30/1987	35.18	39.40	4.22
T-2C	B2	2/24/1988	34.71	39.40	4.69
T-2C	B2	4/12/1988	NM	39.40	NA
T-2C	B2	7/26/1988	35.70	39.40	3.70
T-2C	B2	10/25/1988	36.86	39.40	2.54
T-2C	B2	1/10/1989	NM	39.37	NA
T-2C	B2	4/3/1989	38.92	39.37	0.45
T-2C	B2	9/14/1989	44.24	39.37	-4.87
T-2C	B2	10/10/1989	33.84	39.37	5.53
T-2C	B2	1/8/1990	31.47	39.37	7.90
T-2C	B2	4/6/1990	40.29	39.37	-0.92
T-2C	B2	8/3/1990	50.84	39.37	-11.47
T-2C	B2	11/13/1990	40.05	39.37	-0.68
T-2C	B2	1/8/1991	29.47	39.37	9.90

	Historical Water-Level Elevation Measurements									
Former TRW Microwave Facility										
	1	825 Stew	vart Drive, Sunnyvale,	California						
			Depth to Water	Top of Casing	Water-Level					
Well		Date	(feet below	Elevation	Elevation					
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)					
T-2C	B2	4/9/1991	31.69	39.37	7.68					
T-2C	B2	7/12/1991	36.12	39.37	3.25					
T-2C	B2	10/7/1991	47.67	39.37	-8.30					
T-2C	B2	1/6/1992	47.25	39.37	-7.88					
T-2C	B2	4/6/1992	42.57	39.37	-3.20					
T-2C	B2	7/6/1992	46.92	39.37	-7.55					
T-2C	B2	10/5/1992	42.87	39.37	-3.50					
T-2C	B2	1/5/1993	39.84	39.37	-0.47					
T-2C	B2	4/5/1993	37.88	39.37	1.49					
T-2C	B2	7/6/1993	40.11	39.37	-0.74					
T-2C	B2	10/15/1993	38.82	39.37	0.55					
T-2C	B2	1/11/1994	44.54	39.37	-5.17					
T-2C	B2	4/4/1994	40.30	39.37	-0.93					
T-2C	B2	7/6/1994	35.63	39.37	3.74					
T-2C	B2	10/5/1994	31.41	39.37	7.96					
T-2C	B2	1/10/1995	34.94	39.37	4.43					
T-2C	B2	4/5/1995	18.21	39.37	21.16					
T-2C	B2	7/5/1995	35.45	39.37	3.92					
T-2C	B2	10/9/1995	31.59	39.37	7.78					
T-2C	B2	7/10/1996	31	39.37	8.37					
T-2C	B2	10/1/1996	31.00	39.37	8.37					
T-2C	B2	4/1/1997	33.65	39.37	5.72					
T-2C	B2	10/1/1997	29.50	39.51	10.01					
T-2C	B2	4/1/1998	19.25	39.51	20.26					
T-2C	B2	10/5/1998	15.45	39.51	24.06					
T-2C	B2	4/5/1999	31.50	39.51	8.01					
T-2C	B2	10/4/1999	25.18	39.51	14.33					
T-2C	B2	10/2/2000	18.40	39.51	21.11					
T-2C	B2	10/1/2001	17.50	39.51	22.01					
T-2C	B2	10/14/2002	13.91	38.68	24.77					
T-2C	B2	10/9/2003	11.66	38.68	27.02					
T-2C	B2	10/4/2004	11.01	38.68	27.67					
T-2C	B2	10/10/2005	7.53	38.68	31.15					
T-2C	B2	10/16/2006	6.83	38.68	31.85					
T-2C	B2	10/8/2007	6.39	41.38	34.99					
T-2C	B2	10/13/2008	11.58	41.38	29.80					
T-2C	B2	10/12/2009	10.56	41 38	30.82					

T-2C	B2	1/6/1992	47.25	39.37	-7.88
T-2C	B2	4/6/1992	42.57	39.37	-3.20
T-2C	B2	7/6/1992	46.92	39.37	-7.55
T-2C	B2	10/5/1992	42.87	39.37	-3.50
T-2C	B2	1/5/1993	39.84	39.37	-0.47
T-2C	B2	4/5/1993	37.88	39.37	1.49
T-2C	B2	7/6/1993	40.11	39.37	-0.74
T-2C	B2	10/15/1993	38.82	39.37	0.55
T-2C	B2	1/11/1994	44.54	39.37	-5.17
T-2C	B2	4/4/1994	40.30	39.37	-0.93
T-2C	B2	7/6/1994	35.63	39.37	3.74
T-2C	B2	10/5/1994	31.41	39.37	7.96
T-2C	B2	1/10/1995	34.94	39.37	4.43
T-2C	B2	4/5/1995	18.21	39.37	21.16
T-2C	B2	7/5/1995	35.45	39.37	3.92
T-2C	B2	10/9/1995	31.59	39.37	7.78
T-2C	B2	7/10/1996	31	39.37	8.37
T-2C	B2	10/1/1996	31.00	39.37	8.37
T-2C	B2	4/1/1997	33.65	39.37	5.72
T-2C	B2	10/1/1997	29.50	39.51	10.01
T-2C	B2	4/1/1998	19.25	39.51	20.26
T-2C	B2	10/5/1998	15.45	39.51	24.06
T-2C	B2	4/5/1999	31.50	39.51	8.01
T-2C	B2	10/4/1999	25.18	39.51	14.33
T-2C	B2	10/2/2000	18.40	39.51	21.11
T-2C	B2	10/1/2001	17.50	39.51	22.01
T-2C	B2	10/14/2002	13.91	38.68	24.77
T-2C	B2	10/9/2003	11.66	38.68	27.02
T-2C	B2	10/4/2004	11.01	38.68	27.67
T-2C	B2	10/10/2005	7.53	38.68	31.15
T-2C	B2	10/16/2006	6.83	38.68	31.85
T-2C	B2	10/8/2007	6.39	41.38	34.99
T-2C	B2	10/13/2008	11.58	41.38	29.80
T-2C	B2	10/12/2009	10.56	41.38	30.82
T-2C	B2	10/11/2010	6.69	41.38	34.69
T-2C	B2	10/10/2011	8.36	41.38	33.02
T-2C	B2	10/8/2012	8.75	41.38	32.63
T-2C	B2	10/14/2013	8.98	41.38	32.40
T-2C	B2	4/14/2014	8.62	41.38	32.76
T-2C	B2	9/24/2014	7.50	41.38	33.88
		Per USEPA	approval, well T-2C wa	as destroyed.	
T-9C	B3	1/15/1986	7.20	36.68	31.61
T-9C	B3	4/21/1986	10.50	36.68	26.18
T-9C	В3	5/13/1986	9.83	36.68	26.85
T-9C	B3	7/24/1986	11.21	36.68	25.47

Well			Depth to Water	Top of Casing	Water-Level
		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-9C	В3	10/2/1987	17.16	36.68	19.52
T-9C	В3	11/30/1987	18.33	36.68	18.35
T-9C	В3	2/24/1988	17.76	36.68	18.92
T-9C	В3	4/12/1988	19.35	36.68	17.33
T-9C	В3	7/26/1988	18.85	36.68	17.83
T-9C	В3	10/25/1988	20.32	36.68	16.36
T-9C	В3	1/10/1989	21.29	36.67	15.38
T-9C	В3	4/3/1989	22.11	36.67	14.56
T-9C	В3	8/23/1989	22.74	36.67	13.93
T-9C	В3	10/10/1989	21.99	36.67	14.68
T-9C	В3	1/8/1990	22.51	36.67	14.16
T-9C	В3	4/6/1990	23.09	36.67	13.58
T-9C	B3	8/3/1990	23.39	36.67	13.28
T-9C	B3	11/13/1990	23.97	36.67	12.70
T-9C	B3	1/8/1991	23.58	36.67	13.09
T-9C	B3	4/9/1991	23.16	36.67	13.51
T-9C	B3	7/12/1991	23.60	36.67	13.07
T-9C	В3	10/7/1991	25.07	36.67	11.60
T-9C	B3	1/6/1992	23.55	36.67	13.12
T-9C	B3	4/6/1992	21.37	36.67	15.30
T-9C	B3	7/6/1992	21.73	36.67	14.94
T-9C	B3	10/5/1992	19.03	36.67	17.64
T-9C	B3	1/5/1993	22.95	36.67	13.72
T-9C	B3	4/5/1993	22.00	36.67	14.67
T-9C	B3	7/6/1993	23.42	36.67	13.25
T-9C	B3	10/15/1993	23.70	36.67	12.97
T-9C	B3	1/11/1994	24.99	36.67	11.68
T-9C	B3	4/4/1994	23.61	36.67	13.06
T-9C	B3	7/6/1994	22.57	36.67	14.10
T-9C	B3	10/5/1994	18.96	36.67	17.71
T-9C	B3	1/10/1995	20.94	36.67	15.73
T-9C	B3	4/5/1995	18.23	36.67	18.44
T-9C	B3	7/5/1995	20.42	36.67	16.25
T-9C	B3	10/9/1995	18.43	36.67	18.24
T-9C	B3	7/10/1996	20.37	36.67	16.30
T-9C	B3	10/1/1996	22.10	36.67	14.57
T-9C	B3	4/1/1997	15.69	36.57	20.88
T-9C	B3	10/1/1997	17.15	36.11	18.96
T-9C	B3	4/1/1998	13.16	36.11	22.95
T-9C	B3	10/5/1998	14.83	36.11	21.28
T-9C	B3	4/5/1999	18.44	36.11	17.67
T-9C	B3	10/4/1999	12.70	36.11	23.41
T-9C T-9C	+		17.64	36.11	18.47
	B3	10/2/2000			
T-9C	B3	10/1/2001	15.28	36.11	20.83
T-9C	B3	10/14/2002	12.98	36.11	23.13
T-9C	B3	10/9/2003	11.41	36.11	24.70
T-9C T-9C	B3	10/4/2004	10.45	36.11	25.66

Well			Depth to Water	Top of Casing	Water-Level Elevation
			(feet below	Elevation	
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-9C	B3	10/16/2006	6.78	36.11	29.33
T-9C	B3	10/8/2007	6.13	38.81	32.68
T-9C	B3	10/13/2008	11.13	38.81	27.68
T-9C	B3	10/12/2009	9.74	38.81	29.07
T-9C	B3	10/11/2010	9.4	38.81	29.41
T-9C	В3	10/10/2011	7.99	38.81	30.82
T-9C	B3	10/8/2012	8.33	38.81	30.48
T-9C	В3	10/14/2013	8.54	38.81	30.27
T-9C	B3	10/13/2014	8.21	38.81	30.60
T-9C	В3	10/12/2015	9.22	38.81	29.59
T-9C	В3	10/10/2016	8.20	38.81	30.61
T-9C	В3	10/9/2017	6.74	38.81	32.07
T-9C	В3	10/8/2018	5.90	38.82	32.92
T-10C	B2	7/24/1986	11.73	37.51	28.03
T-10C	B2	10/2/1987	18.55	37.51	18.96
T-10C	B2	11/30/1987	19.36	37.51	18.15
T-10C	B2	2/24/1988	18.77	37.51	18.74
T-10C	B2	4/12/1988	20.65	37.51	16.86
T-10C	B2	7/26/1988	20.12	37.51	17.39
T-10C	B2	10/25/1988	22.05	37.51	15.46
T-10C	B2	1/10/1989	23.02	37.50	14.48
T-10C	B2	4/3/1989	23.73	37.50	13.77
T-10C	B2	9/14/1989	24.12	37.50	13.38
T-10C	B2	10/10/1989	23.23	37.50	14.27
T-10C	B2	1/8/1990	23.84	37.50	13.66
T-10C	B2	4/6/1990	24.89	37.50	12.61
T-10C	B2	8/3/1990	25.22	37.50	12.28
T-10C	B2	11/13/1990	26.41	37.50	11.09
T-10C	B2	1/8/1991	25.88	37.50	11.62
T-10C	B2	4/9/1991	25.66	37.50	11.84
T-10C	B2	7/12/1991	26.24	37.50	11.26
T-10C	B2	10/7/1991	27.91	37.50	9.59
T-10C	B2	1/6/1992	26.42	37.50	11.08
T-10C	B2	4/6/1992	24.30	37.50	13.20
T-10C	B2	7/6/1992	24.26	37.50	13.24
T-10C	B2	10/5/1992	20.87	37.50	16.63
T-10C	B2	1/5/1993	23.85	37.50	13.65
T-10C	B2	4/5/1993	25.46	37.50	12.04
T-10C	B2	7/6/1993	27.00	37.50	10.50
T-10C	B2	10/15/1993	26.97	37.50	10.53
T-10C	B2	1/11/1994	28.65	37.50	8.85
T-10C	B2	4/4/1994	27.26	37.50	10.24
T-10C	B2	7/6/1994	26.20	37.50	11.30
T-10C	B2	10/5/1994	21.24	37.50	16.26
T-10C	B2	1/10/1995	25.02	37.50	12.48
T-10C	B2	4/5/1995	21.76	37.50	15.74
T-10C	B2	7/5/1995	24.49	37.50	13.01
T-10C	B2 B2	10/9/1995	19.80	37.50	17.70

Well		Dep	Depth to Water	Top of Casing	Water-Level Elevation
		Date	(feet below	Elevation	
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-10C	B2	7/10/1996	24.2	37.50	13.30
T-10C	B2	10/1/1996	25.72	37.50	11.78
T-10C	B2	4/1/1997	20.63	37.66	17.03
T-10C	B2	10/1/1997	19.91	37.06	17.15
T-10C	B2	4/1/1998	15.66	37.06	21.40
T-10C	B2	10/5/1998	17.39	37.06	19.67
T-10C	B2	4/5/1999	22.70	37.06	14.36
T-10C	B2	10/4/1999	13.59	37.06	23.47
T-10C	B2	10/2/2000	21.20	37.06	15.86
T-10C	B2	10/1/2001	16.35	37.06	20.71
T-10C	B2	10/14/2002	15.15	37.06	21.91
T-10C	B2	10/9/2003	14.03	37.06	23.03
T-10C	B2	10/4/2004	13.24	37.06	23.82
T-10C	B2	10/10/2005	8.29	37.06	28.77
T-10C	B2	10/16/2006	7.44	37.06	29.62
T-10C	B2	10/8/2007	6.91	39.76	32.85
T-10C	B2	10/13/2008	14.53	39.76	25.23
T-10C	B2	10/12/2009	12.62	39.76	27.14
T-10C	B2	10/11/2010	11.69	39.76	28.07
T-10C	B2	10/10/2011	9.92	39.76	29.84
T-10C	B2	10/8/2012	10.45	39.76	29.31
T-10C	B2	10/14/2013	11.03	39.76	28.73
T-10C	B2	10/13/2014	10.16	39.76	29.6
T-10C	B2	10/12/2015	10.57	39.76	28.48
T-10C	B2	10/10/2016	9.27	39.05	29.78
T-10C	B2	10/9/2017	8.12	39.05	30.93
T-10C	B2	10/8/2018	7.21	39.46	32.25
T-11C	B2	7/24/1986	10.89	36.60	27.76
T-11C	B2	10/2/1987	17.28	36.60	19.32
T-11C	B2	11/30/1987	18.28	36.60	18.32
T-11C	B2	2/24/1988	17.78	36.60	18.82
T-11C	B2	4/12/1988	19.12	36.60	17.48
T-11C	B2	7/26/1988	18.64	36.60	17.96
T-11C	B2	10/25/1988	19.78	36.60	16.82
T-11C	B2	1/10/1989	20.83	36.60	15.77
T-11C	B2	4/3/1989	21.74	36.60	14.86
T-11C	B2	9/14/1989	22.62	36.60	13.98
T-11C	B2	10/10/1989	21.82	36.60	14.78
T-11C	B2	1/8/1990	22.28	36.60	14.32
T-11C	B2	4/6/1990	NM	36.60	NA 10.57
T-11C	B2	8/3/1990	23.03	36.60	13.57
T-11C	B2	11/13/1990	22.30	36.60	14.30
T-11C T-11C	B2 B2	1/8/1991 4/9/1991	22.84 22.30	36.60 36.60	13.76 14.30
T-11C	B2 B2	7/12/1991	22.30	36.60	14.30
T-11C	B2 B2	10/7/1991	24.19	36.60	12.41
T-11C	B2	1/6/1992	24.19	36.60	13.89
T-11C	B2	4/6/1992	20.38	36.60	16.22
T-11C	B2	7/6/1992	20.36 NM	36.60	NA
T-11C	B2	10/5/1992	18.66	36.60	17.94

Well		Date	Depth to Water (feet below	Top of Casing	Water-Level
				Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
T-11C	B2	1/5/1993	22.33	36.60	14.27
T-11C	B2	4/5/1993	20.82	36.60	15.78
T-11C	B2	7/6/1993	22.15	36.60	14.45
T-11C	B2	10/15/1993	22.23	36.60	14.37
T-11C	B2	1/11/1994	23.86	36.60	12.74
T-11C	B2	4/4/1994	22.44	36.60	14.16
T-11C	B2	7/6/1994	21.60	36.60	15.00
T-11C	B2	10/5/1994	18.58	36.60	18.02
T-11C	B2	1/10/1995	19.86	36.60	16.74
T-11C	B2	4/5/1995	17.12	36.60	19.48
T-11C	B2	7/5/1995	19.72	36.60	16.88
T-11C	B2	10/9/1995	17.92	36.60	18.68
T-11C	B2	7/10/1996	19.95	36.60	16.65
T-11C	B2	10/1/1996	21.46	36.60	15.14
T-11C	B2	4/1/1997	17.55	36.49	18.94
T-11C	B2	10/1/1997	16.81	35.95	19.14
T-11C	B2	4/1/1998	13.18	35.95	22.77
T-11C	B2	10/5/1998	14.34	35.95	21.61
T-11C	B2	4/5/1999	17.92	35.95	18.03
T-11C	B2	10/4/1999	12.94	35.95	23.01
T-11C	B2	10/2/2000	16.96	35.95	18.99
T-11C	B2	10/1/2001	14.33	35.95	21.62
T-11C	B2	10/14/2002	12.87	35.95	23.08
T-11C	B2	10/9/2003	11.18	35.95	24.77
T-11C	B2	10/4/2004	10.30	35.95	25.65
T-11C	B2	10/10/2005	7.49	35.95	28.46
T-11C	B2	10/16/2006	6.77	35.95	29.18
T-11C	B2	10/8/2007	6.34	38.65	32.31
T-11C	B2	10/13/2008	10.83	38.65	27.82
T-11C	B2	10/12/2009	9.41	38.65	29.24
T-11C	B2	10/11/2010	9.31	38.65	29.34
T-11C	B2	10/10/2011	7.95	38.65	30.70
T-11C	B2	10/8/2012	8.25	38.65	30.40
T-11C	B2	10/14/2013	8.45	38.65	30.20
T-11C	B2	10/13/2014	8.03	38.65	30.62
T-11C	B2	10/12/2015	9.07	38.65	29.58
T-11C	B2	10/10/2016	7.78	38.65	30.87
T-11C	B2	10/9/2017	6.61	38.65	32.04
T-11C	B2	10/8/2018	5.88	38.78	32.90
T-12C	B2	9/14/1989	24.42	38.62	16.32
T-12C	B2	1/8/1990	23.48	38.62	15.14
T-12C	B2	4/6/1990	24.48	38.62	14.14
T-12C	B2	8/3/1990	24.23	38.62	14.39
T-12C	B2	11/13/1990	23.47	38.62	15.15
T-12C	B2	1/8/1991	23.97	38.62	14.65
T-12C	B2	4/9/1991	23.82	38.62	14.80
T-12C	B2	7/12/1991	24.12	38.62	14.50
T-12C	B2	10/7/1991	25.31	38.62	13.31
T-12C	B2	1/6/1992	23.65	38.62	14.97

Well				Depth to Water	Top of Casing	Water-Level
		Date	(feet below	Elevation	Elevation	
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)	
T-12C	B2	4/6/1992	21.11	38.62	17.51	
T-12C	B2	7/6/1992	21.69	38.62	16.93	
T-12C	B2	10/5/1992	20.15	38.62	18.47	
T-12C	B2	1/5/1993	22.46	38.62	16.16	
T-12C	B2	4/5/1993	21.41	38.62	17.21	
T-12C	B2	7/6/1993	22.08	38.62	16.54	
T-12C	B2	10/15/1993	22.40	38.62	16.22	
T-12C	B2	1/11/1994	24.12	38.62	14.50	
T-12C	B2	4/4/1994	22.63	38.62	15.99	
T-12C	B2	7/6/1994	21.71	38.62	16.91	
T-12C	B2	10/5/1994	18.91	38.62	19.71	
T-12C	B2	1/10/1995	20.17	38.62	18.45	
T-12C	B2	4/5/1995	16.14	38.62	22.48	
T-12C	B2	7/5/1995	19.81	38.62	18.81	
T-12C	B2	10/9/1995	18.00	38.62	20.62	
T-12C	B2	7/10/1996	19.9	38.62	18.72	
T-12C	B2	10/1/1996	21.61	38.62	17.01	
T-12C	B2	4/1/1997	17.60	38.56	20.96	
T-12C	B2	10/1/1997	16.84	38.04	21.20	
T-12C	B2	4/1/1998	13.45	38.04	24.59	
T-12C	B2	10/5/1998	14.12	38.04	23.92	
T-12C	B2	4/5/1999	17.66	38.04	20.38	
T-12C	B2	10/4/1999	13.77	38.04	24.27	
T-12C	B2	10/2/2000	16.23	38.04	21.81	
T-12C	B2	10/1/2001	14.35	38.04	23.69	
T-12C	B2	10/14/2002	12.39	38.04	25.65	
T-12C	B2	10/9/2003	10.11	38.04	27.93	
T-12C	B2	10/4/2004	9.42	38.04	28.62	
T-12C	B2	10/10/2005	6.92	38.04	31.12	
T-12C	B2	10/16/2006	6.24	38.04	31.80	
T-12C	B2	10/8/2007	5.91	40.74	34.83	
T-12C	B2	10/13/2008	9.7	40.74	31.04	
T-12C	B2	10/12/2009	8.83	40.74	31.91	
T-12C	B2	10/11/2010	8.36	40.74	32.38	
T-12C	B2	10/10/2011	7.16	40.74	33.58	
T-12C	B2	10/8/2012	7.43	40.74	33.31	
T-12C	B2	10/14/2013	7.68	40.74	33.06	
T-12C	B2	10/13/2014	7.54	40.74	33.2	
T-12C	B2	10/12/2015	8.57	40.74	32.17	
T-12C	B2	10/10/2016	7.31	40.74	33.43	
T-12C	B2	10/9/2017	5.99	40.74	34.75	
T-12C	B2	10/8/2018	5.19	40.84	35.65	
36-DD	B2	1/15/1986	8.10	39.37	33.48	
36-DD	B2	3/10/1986	NM	39.37	NA	
36-DD	B2	3/12/1986	6.53	39.37	32.84	
36-DD	B2	3/14/1986	6.56	39.37	32.81	
36-DD	B2	3/17/1986	NM	39.37	NA	
36-DD	B2	4/21/1986	8.10	39.37	31.27	

Former TRW Microwave Facility								
825 Stewart Drive, Sunnyvale, California								
			Depth to Water	Top of Casing	Water-Level			
Well		Date	(feet below	Elevation	Elevation			
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)			
36-DD	B2	4/22/1986	NM	39.37	NA			
36-DD	B2	4/23/1986	NM	39.37	NA			
36-DD	B2	5/13/1986	8.11	39.37	31.26			
36-DD	B2	7/24/1986	8.23	39.37	31.14			
36-DD	B2	10/2/1987	10.21	39.37	29.16			
36-DD	B2	11/30/1987	11.08	39.37	28.29			
36-DD	B2	2/24/1988	10.94	39.37	28.43			
36-DD	B2	4/12/1988	11.52	39.37	27.85			
36-DD	B2	7/26/1988	11.79	39.37	27.58			
36-DD	B2	10/25/1988	12.36	39.37	27.01			
36-DD	B2	1/10/1989	12.82	39.20	26.38			
36-DD	B2	4/3/1989	13.18	39.20	26.02			
36-DD	B2	8/23/1989	14.14	39.20	25.06			
36-DD	B2	10/10/1989	13.25	39.20	25.95			
36-DD	B2	1/8/1990	14.06	39.20	25.14			
36-DD	B2	4/6/1990	14.75	39.20	24.45			
36-DD	B2	8/3/1990	14.30	39.20	24.90			
36-DD	B2	10/9/1990	14.46	39.20	24.74			
36-DD	B2	1/8/1991	16.12	39.20	23.08			
36-DD	B2	4/9/1991	14.69	39.20	24.51			
36-DD	B2	7/12/1991	15.59	39.20	23.61			
36-DD	B2	10/7/1991	15.80	39.20	23.40			
36-DD	B2	1/6/1991	15.03	39.20	24.17			
	I	.	l					
36-DD	B2	4/6/1992	10.95	39.20	28.25			
36-DD	B2	7/6/1992	13.40	39.20	25.80			
36-DD	B2	10/5/1992	12.50	39.20	26.70			
36-DD	B2	1/5/1993	13.19	39.20	26.01			
36-DD	B2	4/5/1993	10.88	39.20	28.32			
36-DD	B2	7/6/1993	11.47	39.20	27.73			
36-DD	B2	10/15/1993	12.46	39.20	26.74			
36-DD	B2	1/11/1994	12.83	39.20	26.37			
36-DD	B2	4/4/1994	12.58	39.20	26.62			
36-DD	B2	7/6/1994	12.80	39.20	26.40			
36-DD	B2	10/5/1994	10.75	39.20	28.45			
36-DD	B2	1/10/1995	8.69	39.20	30.51			
36-DD	B2	4/5/1995	8.46	39.20	30.74			
36-DD	B2	7/5/1995	10.08	39.20	29.12			
36-DD	B2	10/9/1995	9.52	39.20	29.68			
36-DD	B2	7/10/1996	10.19	39.20	29.01			
36-DD	B2	10/1/1996	10.56	39.20	28.64			
36-DD	B2	4/1/1997	8.89	39.20	30.31			
36-DD	B2	Oct-97+	9.62	38.74	29.12			
36-DD	B2	4/1/1998	7.87	38.74	30.87			
36-DD	B2	10/5/1998	8.75	38.74	29.99			
36-DD	B2	4/5/1999	8.72	38.74	30.02			
36-DD	B2	10/4/1999	8.75	38.74	29.99			
36 DD	D2	10/4/1000	0.70	20.74	20.00			

9.40

8.91

38.74

38.74

B2

B2

10/2/2000

10/1/2001

36-DD

36-DD

29.34

29.83

			Depth to Water	Top of Casing	Water-Level
Well		Date	(feet below	Elevation	Elevation
Number	Zone	Measured	top of casing)	(feet, MSL)	(feet, MSL)
36-DD	B2	10/14/2002	8.64	38.74	30.10
36-DD	B2	10/9/2003	7.03	38.74	31.71
36-DD	B2	10/4/2004	7.07	38.74	31.67
36-DD	B2	10/10/2005	5.92	38.74	32.82
36-DD	B2	10/16/2006	5.76	38.74	32.98
36-DD	B2	10/8/2007	5.45	41.58	36.13
36-DD	B2	10/13/2008	6.76	41.58	34.82
36-DD	B2	10/12/2009	6.85	41.58	34.73
36-DD	B2	10/11/2010	6.55	41.58	35.03
36-DD	B2	10/10/2011	5.72	41.58	35.86
36-DD	B2	10/8/2012	5.91	41.58	35.67
36-DD	B2	10/14/2013	6.05	41.58	35.53
36-DD	B2	10/13/2014	6.2	41.58	35.38
36-DD	B2	10/12/2015	7.11	41.58	34.47
36-DD	B2	10/10/2016	6.51	41.58	35.07
36-DD	B2	10/9/2017	5.22	41.58	36.36
36-DD	B2	10/8/2018	4.74	41.52	36.78
T-8D	B4	1/15/1986	7.50	38.29	32.85
T-8D	B4	4/23/1986	8.10	38.29	30.19
T-8D	B4	5/13/1986	8.03	38.29	30.26
T-8D	B4	7/24/1986	9.34	38.29	28.95
T-8D	B4	10/2/1987	14.55	38.29	23.74
T-8D	B4	11/30/1987	14.48	38.29	23.81
T-8D	B4	2/24/1988	13.46	38.29	24.83
T-8D	B4	4/12/1988	14.27	38.29	24.02
T-8D	B4	7/26/1988	15.03	38.29	23.26
T-8D	B4	10/25/1988	17.18	38.29	21.11
T-8D	B4	1/10/1989	17.15	38.28	21.13
T-8D	B4	4/3/1989	18.27	38.28	20.01
T-8D	B4	9/14/1989	14.97	38.28	23.31
T-8D	B4	10/10/1989	18.26	38.28	20.02
T-8D	B4	1/8/1990	18.57	38.28	19.71
T-8D	B4	4/6/1990	17.85	38.28	20.43
T-8D	B4	7/5/1990	17.97	38.28	20.31
T-8D	B4	10/9/1990	16.78	38.28	21.50
T-8D	B4	1/8/1991	17.53	38.28	20.75
T-8D	B4	4/9/1991	16.07	38.28	22.21
T-8D	B4	7/9/1991	17.15	38.28	21.13
T-8D	B4	10/7/1991	17.83	38.28	20.45
T-8D	B4	1/6/1992	16.94	38.28	21.34
T-8D	B4	4/6/1992	14.25	38.28	24.03
T-8D	B4	7/6/1992	15.02	38.28	23.26
T-8D	B4	10/5/1992	12.97	38.28	25.31
T-8D	B4	1/5/1993	17.02	38.28	21.26
T-8D	B4	4/5/1993	14.35	38.28	23.93
T-8D	B4	7/6/1993	14.32	38.28	23.96
T-8D	B4	10/15/1993	16.87	38.28	21.41
T-8D	B4	1/11/1994	15.31	38.28	22.97

Historical Water-Level Elevation Measurements Former TRW Microwave Facility 825 Stewart Drive, Sunnyvale, California Depth to Water Top of Casing Water-Level Well Date (feet below Elevation Elevation Number Zone Measured top of casing) (feet, MSL) (feet, MSL) 14.42 T-8D 4/4/1994 38.28 23.86 В4 T-8D В4 7/6/1994 14.54 38.28 23.74 T-8D **B4** 10/5/1994 12.40 38.28 25.88 1/10/1995 12.06 38.28 26.22 T-8D **B**4 T-8D В4 4/5/1995 9.88 38.28 28.40 T-8D В4 7/5/1995 11.26 38.28 27.02 T-8D В4 10/9/1995 10.69 38.28 27.59 27.79 T-8D В4 7/10/1996 10.49 38.28 T-8D **B4** 10/1/1996 11.31 38.28 26.97 T-8D В4 4/1/1997 7.11 38.19 31.08 T-8D В4 10/1/1997 7.83 37.65 29.82 T-8D В4 4/1/1998 3.83 37.65 33.82 T-8D 5.32 37.65 32.33 **B4** 10/5/1998 T-8D В4 4/5/1999 5.43 37.65 32.22 32.90 T-8D В4 10/4/1999 4.75 37.65 T-8D **B4** 10/2/2000 8.17 37.65 29.48 T-8D 5.90 37.65 31.75 **B4** 10/1/2001 T-8D **B**4 10/14/2002 5.89 37.65 31.76 T-8D **B4** 10/9/2003 NM 37.65 NA T-8D 37.65 33.88 **B4** 10/4/2004 3.77 T-8D **B4** 10/10/2005 1.54 37.65 36.11 T-8D 37.65 36.55 В4 10/16/2006 1.1 T-8D В4 0.45 40.35 39.90 10/8/2007 T-8D 3.20 40.35 37.15 B4 10/13/2008 T-8D В4 10/12/2009 4.01 40.35 36.34 T-8D В4 10/11/2010 3.14 40.35 37.21 38.86 T-8D 40.35 В4 10/10/2011 1.49 T-8D В4 10/8/2012 1.81 40.35 38.54 T-8D В4 10/14/2013 2.57 40.35 37.78 3.54 40.35 T-8D В4 10/13/2014 36.81 T-8D В4 4.70 40.35 35.65 10/12/2015 T-8D В4 10/10/2016 2.96 40.35 37.39

1.63

0.02

40.35

38.83

Notes:

Wells resurveyed as needed after work that changes top of casing elevation. Elevations in NGVD29 prior to 2007. From 2007, elevations in NAVD88.

10/9/2017

10/8/2018

MSL Mean Sea Level NAVD88 North American Vertical Datum 1988
NM Well not measured due to i NGVD29 National Goeodetic Vertical Datum 1929

NA Not Applicable

T-8D

T-8D

+ = Measurements taken by AMD.

В4

В4

* = Data from October 2010 groundwater sampling event used

38.72

38.81

Appendix C Historical Groundwater Analytical Results

	Well Number/	PCE	TCE	cis- 1,2-DCE	trans- 1,2-DCE	Total 1,2-DCE	VC	1,1,1- TCA		1,1-DCA	CDM	Freon 11		Freon 113	BFM	1,2- DCB	CBN	BEN	EBN	TOL	XYL
	Dates	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	Drinking Water Standard	5	5	6	10	6	0.5	200	6	5	100	150	NE	1200	100	600	70	1	300	150	1750
T-1A (ZA)	Aug-83	ND<1.0	660				ND	4	ND<1.0	ND<1.0				ND<1.0		ND					
T-1A	Sep-83	7	1,000					5	ND	ND<1.0				ND							
T-1A	Sep-83	3	540			510		3	ND	ND<1.0				ND							
T-1A	Mar-84		680																		
T-1A	Aug-84	5	950			360	ND	7	ND	ND				ND		ND					
T-1A	Nov-84	4	930					5													
T-1A	Oct-85	10	640				ND<5.0	30	ND<5.0	ND<5.0				ND<5.0		ND<5.0					
T-1A	Jan-86	ND<5.0	630			490	ND<5.0	ND<5.0	ND<5.0	ND<5.0						ND<5.0					
T-1A	Apr-86	ND<2.0	340				ND<2.0	ND<2.0	ND<2.0	ND<2.0				ND<2.0		ND<2.0					
T-1A	Jul-86	ND<1.0	140				ND<1.0	ND<1.0	ND<1.0					ND<1.0		ND<1.0					
T-1A	Sep-86	ND<2.0	420				ND<2.0	5	ND<2.0	ND<2.0			000 D00	ND<2.0		ND<2.0					
T-1A	Jan-87	ND<10	140				ND<10	ND<10	ND<10	ND<10				ND<10		ND<10					
T-1A	Apr-87	ND<2.5	160				ND<2.5	ND<2.5	ND<2.5					ND<2.5		ND<2.5					
T-1A	Jun-87	ND<1.0	190				ND<1.0	7.0	ND<1.0	ND<1.0				ND<1.0		ND<1.0					
T-1A	Oct-87	ND<2.5	160				ND<2.5	8.6	ND<2.5	ND<2.5				ND<2.5		ND<2.5					
T-1A	Jan-88	ND<1.0	200				ND<1.0	3.1	ND<1.0	1.5				9.1		ND<1.0					
T-1A	Jun-88	ND<0.5	56				ND<0.5	1.5	ND<0.5	ND<0.5				10		ND<0.5					
T-1A	Aug-88	ND<1.0	60			67	ND<1.0	0.9	ND<1.0	ND<1.0				ND<1.0		ND<1.0					
T-1A	Nov-88	ND<0.5	88				ND<0.5	0.5	ND<0.5	2.7				ND<0.5		ND<0.5					
T-1A	Feb-89	ND<0.5	86				ND<0.5	ND<0.5	ND<0.5	1.3				ND<0.5		ND<0.5					
T-1A	Aug-89	ND<0.5	87				ND<0.5	ND<0.5	ND<0.5	0.9				ND<0.5		ND<0.5					
T-1A	Oct-89	ND<0.5	90				ND<0.5	ND<0.5	ND<0.5					ND<0.5		ND<0.5					
T-1A	Apr-90	ND<0.5	110				ND<0.5	ND<0.5	ND<0.5		ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-1A	Oct-93	ND<5.0	120				ND<10	ND<5.0	ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-1A	Oct-94	ND<5.0	74			ND<5	ND<10		ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-1A	Oct-95	ND<3.0	61				ND<3.0	ND<3.0	ND<3.0	ND<3.0	ND	ND	ND	ND<3.0	ND	ND<3.0	ND				.
T-1A	Oct-96	ND<1.0 ND<0.5		2.6	 ND<0.5		ND<2.0	ND<1.0	ND<1.0	ND<1.0	<u> </u>	ND		ND<1.0	ND	<u> </u>					
T-1A			48	3.6					ND<0.5	ND<0.5	ND		ND	ND<0.5		ND<0.5	ND				
T-1A	Oct-97 Oct-98	ND<1.0	51	2.0	 ND-10		ND<1.0	ND<1.0	,		ND	ND	ND		ND	ND<2.0	ND				
		ND<1.0	42	2.0	ND<1.0		ND<1.0		ND<1.0	ND<1.0 ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-1A	Oct-99	ND<1.0	34				ND<1.0		1			ND	ND	ND<1.0		ND<1.0	ND				
T-1A	Oct-00	ND<2.0	34				ND<2.0			ND<2.0		ND ND	ND ND<1.0	ND<2.0	ND ND	ND<2.0					
T-1A	Oct-01	ND<0.5	28				ND<0.5							ND<2.0	ND<2.0 ND<2.0		ND<0.5				
T-1A T-1A	Oct-02	ND<0.5	35	L woll T 1A	was abanda	nod in Echru	ND<0.5	6.0>UN	ND<0.5	ND<0.5	0.0>UN	ווי>טווי	ND<1.0	ND<0.5	ND<2.0	14U<0.5	0.0>UN				
	Aug 00		Board approva		!	ned in Febru ND<5.0		130	ND<5.0	ND<5.0				ND<5.0	ND	ND<5.0					-
T-2A (ZA)	Aug-83	86,000	6,100,000				ND<5.0				-				ND						
T-2A	Sep-83	4,000	730,000			2,000		ND	ND	ND				ND	ND						
T-2A	Sep-83	7,000	890,000			3,000		ND	ND	ND				ND	ND						
T-2A	Mar-84		13,000				200	ND							ND						
T-2A	Aug-84	8,600	190,000			21,000	300	ND 4500	600	ND				ND	ND	ND					
T-2A	Nov-84	5,400	520,000			17,000		ND<500							ND	 ND (50					
T-2A	Oct-85	4,600	12,000			15,000	ND<50	ND<50		ND<50				ND<50	ND	ND<50					
T-2A	Mar-86	ND<100	9,800			2,500	ND<100	ND<100	1						ND	ND<100					
T-2A	Apr-86	3,700	15,000			13,000	650			ND<100					ND	ND<100					
T-2A	Apr-86	1,700	10,000			30,000	740		1	ND<100				ND<100	ND	ND<100					
T-2A	Jul-86	980	6,400			5,400	540			ND<50				ND<50	ND	650					
T-2A	Jan-87	380	2,900			5,500	ND<50	ND<50	ND<50	ND<50				ND<50	ND	610					

		7		Y					T							7					
T-2A	Oct-87	190	980			330	40	7.5	ND<5.0	ND<5.0				ND<5.0	ND	46					
T-2A	Jun-88	610	4,000			4,200	4,600	ND<50	ND<50	ND<50				ND<50	ND	ND<50					
T-2A	Jun-88	530	3,200			3,100	4,000	1.6	15	1.4				ND<5.0	ND	32					
T-2A	Aug-88	250	1,400			5,700	11,000	ND<100	ND<100	ND<100				ND<100	ND	ND<100					
T-2A	Nov-88	260	1,300			4,200	18,000	ND<100	ND<100	ND<100				ND<100	ND	ND<100					
T-2A	Nov-88	ND<10	1,300			3,800	3,600	ND<10	ND<10	ND<10				ND<10	ND	ND<10					
T-2A	Feb-89	220	620			240	ND<10	ND<10	ND<10	ND<10				380	ND	ND<10					
T-2A	May-89	140	470			500	340	ND<5.0	ND<5.0	ND<5.0				ND<5.0	ND	ND<5.0					
T-2A	Aug-89	41	2,300			30	ND<10	ND<10	ND<10	ND<10				18	ND	ND<10					
T-2A	Oct-89	84	230			23	220	ND<1.0	3	ND<1.0				ND<1.0	ND	79					
T-2A	Apr-90	40	160			12	7.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-2A	Jul-90	40	100			40	3.3	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	3.4	ND				
T-2A	Apr-91	12	120			50	ND<1	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-2A	Jan-92	0.8	42			6.1	4.0		ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-2A	Apr-92	30	4,400			410	120	ND<20	ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-2A	Oct-92	10	640			650	80		ND<0.5	ND<0.5	ND	ND	ND		ND	2.1	ND				
T-2A	Apr-93	18	1,300			1,710	14	ND<0.5	13	ND<0.5	ND	ND	ND		ND	ND<0.5	ND				
T-2A	Oct-93	16	5,800			4,732	300	ND<5.0	49	ND<5.0	ND	ND	ND	ND<5.0	ND	23	ND				
T-2A	Feb-94	6.3	1,900			2,723	260	ND<0.5	32	1.1	ND	ND	ND	1.9	ND ND	9.6	ND				
T-2A	Apr-94	3.9	1,600			2,216	120	ND<0.5	21	ND<0.5	ND	ND	ND	ND<0.5	ND	2.2	ND				
T-2A	Oct-94	ND<25	320			530	ND<25	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND ND	ND<25	ND				
T-2A	Apr-95	18	280			300	ND<10	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-2A	Oct-95	14	190			140	13	ND<2.0	ND<2.0	ND<2.0	ND	ND	ND	ND<2.0	ND ND	ND<2.0	ND				
T-2A	Oct-95	3.3	71	97	1.0		9.5	ND<2.0	0.6	ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND				
T-2A		3.3	330	250			_	ND<0.5	!	ND<0.3		ND		-	ND ND	ND<0.3					1
T-2A	Apr-97		470		4.4		3.1		2.1		ND		ND	1.8			ND N				
	Oct-97	71		320	ND<25		ND<25	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<50	ND<50				
T-2A	Apr-98	20	440	150	ND<10		ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<40	ND	ND<10	ND<25	NC	NC.		
T-2A	Oct-98	NS	NS	NS 400	NS ND 440	NS	NS ND 440	NS ND 440	NS ND 440	NS ND 440	NS	NS	NS	NS ND 440	NS NS	NS ND 440	NS ND 405	NS	NS	NS	NS
T-2A	Apr-99	20	210	160	ND<10		ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND<25				
T-2A	Oct-99	27	270	220	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND<10				
T-2A	Oct-00	ND<20	160	520	ND<20		330	ND<20	ND<20	ND<20	ND<20	ND	ND	ND<20	ND	ND<20	ND<20				
T-2A	Jan-01	11	120	330	4.2		86	2.3	1.3	ND<1.0	ND	ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-2A	Mar-01	13	110	360	5.3		400	1.6	1.2	ND<1.0	ND	ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-2A	Jun-01	1.1	5.4	57	5.2		620	ND<1.0	1.2	1.9	ND	4.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-2A	Aug-01	19	88	400	8.6		690	ND<1.0	ND<1.0	1.1	ND	ND<2.0	ND<2.0		ND		2.9		1.8	ND<1.0	5.4
T-2A	Oct-01	ND<50	480	230	ND<50		310		ND<50				ND<100		ND<50		ND<50		ND<50	ND<50	_
T-2A	Nov-01	10	140	180	6.7		460		}	ND<5.0	ND	ND<5.0		ND<5.0		ND<5.0	ND	ND<5.0	ND<5.0	ND<5.0	ND<10
T-2A	Jan-02	ND<13	110	210	ND<13		240		ND<13	ND<13	ND	ND<25	ND<13		ND	20	ND<13				—
T-2A	Apr-02	ND<1.0	4.2	45	ND<1.0		76			ND<1.0		ND<2.0	ND<2.0		ND		76		ND<1.0	ND<1.0	ND<2.0
T-2A	Jul-02	ND<1.0	32	94	6.7		140	ND<1.0				ND<2.0	ND<2.0				7.1		ND<1.0	ND<1.0	+
T-2A	Oct-02	1.2	28	31	2		37		1	ND<1.0		ND<2.0	ND<2.0		ND<1.0		28	ND<1.0	ND<1.0	ND<1.0	3.9
T-2A	Jan-03	ND<1.0	16	12	1.1		24			ND<1.0		ND<2.0	ND<2.0		ND<1.0		16				
T-2A	Apr-03	ND<1.0	15	7.3	ND<1.0		13		}	ND<1.0		ND<2.0	ND<2.0		ND<1.0		6.6		ND<1.0	ND<1.0	+
T-2A	Jul-03	ND<1.0	2.5	17	ND<1.0		48			ND<1.0		ND<2.0	ND<2.0		ND<1.0		14		19	ND<1.0	3.8
T-2A	Oct-03	ND<5.0	6.3	66	ND<5.0	1	130	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		24	ND<5.0	ND<5.0	ND<5.0	
T-2A	Jan-04	ND<5.0	ND<5.0	ND<5.0	ND<5.0		9.7	ND<5.0	ND<5.0	ND<5.0	-	ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
T-2A	Apr-04	ND<1.0	4.4	59	ND<1.0		30	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
T-2A	Oct-04	ND<5.0	ND<5.0	200	69		100	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		46	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2A	Jan-05	ND<5.0	ND<5.0	150	100		49			ND<5.0			ND<5.0		ND<5.0		30	ND<5.0	ND<5.0	ND<5.0	
			9.4	13	9.0		23		!	ND<5.0		ND<5.0			ND<5.0		13		ND<5.0	ND<5.0	-
T-2A	Apr-05	ND<5.0	9. 4	, ,	0.0		, 20	1 10 0.0	, , ,					,		,		140 0.01	140		

T-2A		Oct-05	ND<5.0	ND<5.0	45	49		22			ND<5.0		ND<5.0	ND<5.0		ND<5.0		18	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2A		Jan-06	ND<5.0	ND<5.0	220	190		120	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		39	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2A		Apr-06	ND<5.0	ND<5.0	170	110		35	ND<5.0	ND<5.0			ND<5.0	ND<5.0		ND<5.0		14	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2A		Oct-06	ND<5.0	ND<5.0	580	270		140	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		41	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2A		Apr-07	ND<5.0	25	180	ND<5.0		65	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2A		Oct-07	ND<5.0	ND<5.0	650	280		200	ND<5.0	ND<5.0	ND<5.0	-	ND<5.0	ND<5.0		ND<5.0		48	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2A		Oct-08	ND<1	2.4				52	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<2	9.4	31	ND<1	ND<1	ND<1	ND<2
T-2A		Oct-09	ND<20	ND<20				1,100	ND<20	ND<20	ND<20	ND<20	ND<40	ND<20	ND<20	ND<40	ND<20	46	ND<20	ND<20	ND<20	ND<40
T-2A		Oct-10	ND<20	ND<20	8,700	75		5,400	ND<20	ND<20	ND<20	ND<20	ND<40	ND<20	ND<20	ND<40	23	140	ND<20	ND<20	ND<20	ND<40
T-2A		Nov-10	ND<50	ND<50	3,200	ND<50		2,700	ND<50	ND<50	ND<50	ND<50	ND<100	ND<50	ND<50	ND<100	57	120				
T-2A		Mar-11	ND<0.50	0.68	7	2.5		31	ND<0.50	3.2	57	ND<0.50	1.7	ND<0.50	4.8							
T-2A		May-11	ND<0.50	0.52	3	2.3		5	ND<0.50	2.7	39	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
T-2A		Oct-11	ND<0.50	ND<0.50	12	6		11	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	3.4	74	ND<0.50	1.7	0.94	5.3
T-2A		Apr-12	ND<0.50	0.84	34	16		27	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	6.1	47	ND<0.50	1.1	0.57	1.8
T-2A		Oct-12	ND<0.50	ND<0.50	120	48		67	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	8.9	78	ND<0.50	1.9	0.53	2.6
T-2A		May-13	ND<0.50	0.53	130	35		68	ND<0.50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	5.8	43	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-2A	Dup	May-18	ND<0.50	0.59	160	35		81	ND<0.50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	6.6	47	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-2A	•	Oct-13	ND<0.50	0.76	340	86		430	ND<0.50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	19	85				
T-2A		Apr-14	ND<5.0	ND<5.0	850	57		670	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	ND<10	20	120	ND<5.0	ND<5.0	ND<5.0	ND<10
T-2A	Dup	Apr-18	ND<5.0	ND<5.0	680	51		540	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	ND<10	17	110	ND<5.0	ND<5.0	ND<5.0	ND<10
T-2A		Sep-14	ND<5.0	ND<5.0	190	50		590	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	ND<10	19	150				
			Per United	States Environ	mental Prot	tection Agen	cy approval,															
T-3A (ZA)		Aug-83	1,100	1,600		T	36	ND<5.0	0.2		ND<5.0				ND<5.0	ND	ND<5.0					
T-3A		Sep-83	560	300			91		16	ND	ND<1.0				52	ND						
T-3A		Sep-83	580	290			96		16		ND<1.0				35	ND						
T-3A		Mar-84		240												ND						
T-3A		Aug-84	210	530			690	ND	13	ND	2				ND	ND	ND					
T-3A		Nov-84	260	1,300			1,100		42							ND						
T-3A		Oct-85	170	3,100			3,200	ND<50	95	ND<50	ND<50				480	ND	ND<50					
T-3A		Oct-85	ND<25	2,700			1,100	ND<25	ND<25	ND<25	ND<25				ND<25	ND	ND<25					
T-3A		Apr-86	91	1,500			220	ND<1.0	12	ND<1.0	ND<1.0				ND<1.0	ND	ND<1.0					
T-3A		Jul-86	180	1,800			790	ND<10	ND<10	ND<10	ND<10				ND<10	ND	ND<10					
T-3A		Sep-86	15	560			340	ND<2.0	15	ND<2.0	ND<2.0				ND<2.0	ND	ND<2.0					
T-3A		Jan-87	ND<10	3,000			880	ND<10	ND<10	ND<10	ND<10				ND<10	ND	ND<10					
T-3A		Apr-87	20	920			740	ND<10	100	12	ND<10				86	ND	ND<10					
T-3A		Jun-87	24	900			720	ND<10	72		ND<10				ND<10	ND	ND<10					
T-3A		Oct-87	15	460			310	ND<2.5	16		ND<2.5				ND<2.5	ND	ND<2.5					
T-3A		Jan-88	0.7	4			0.8	ND<0.5	0.6	ND<0.5					ND<0.5	ND	ND<0.5					
T-3A		Jan-88	0.5	2			0.6	ND<0.1	0.2	ND<0.1	ND<0.1				ND<0.1	ND	ND<0.2					
T-3A		May-88	0.4	2			0.7	ND<0.1	0.2	ND<0.1	ND<0.1				ND<0.1	ND	ND<0.2					
T-3A		May-88	0.4	2			0.7	ND<0.1	0.2	ND<0.1	ND<0.1				ND<0.1	ND	ND<0.2					
T-3A		Aug-88	0.4	5			1.1	ND<0.1	1.1		ND<0.1				ND<0.1	ND	ND<0.1					
T-3A		Nov-88	ND<0.5	4			1.1	ND<0.5			ND<0.5				ND<0.5	ND	ND<0.5					
T-3A		Feb-89	ND<0.5	4 ND<0.5			ND<0.5	ND<0.5	ND<0.5						ND<0.5	ND	ND<0.5					
T-3A		May-89							ND<0.5						ND<0.5		1					
T-3A		<u> </u>	ND<1.0	2 5			ND<1.0	ND<1.0								ND	ND<1.0					
		Aug-89	0.7	3			ND<0.5	ND<0.5							ND<0.5	ND	ND<0.5					
T-3A		Oct-89	ND<0.5	4			ND<0.5	ND<0.5						ND	ND<0.5	ND	ND<0.5					
T-3A		Jan-90	ND<0.5	8.2			ND<0.5	ND<0.5				ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-3A		Apr-90	ND<0.5	1.5			ND<0.5	ND<0.5	ND<0.5			ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-3A T-3A		Jul-90	ND<0.5	4.6			ND<0.5	ND<0.5	ND<0.5			ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
		Oct-90	1.4	11			ND<0.5	ND<0.5	4.2	LND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				

T-3A	Jan-91	1.4	7.4			ND<0.5	ND<0.5		ND<0.5	<u> </u>	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-3A	Apr-91	2.1	10			ND<0.5	ND<0.5	3.1	ND<0.5		ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-3A	Jul-91	3.2	19			ND<0.5	ND<0.5	6.2	ND<0.5		ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-3A	Oct-91	5.8	25			ND<0.5	ND<0.5	5.4	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-3A	Jan-92	2.0	11			ND<0.5	ND<0.5	2.3	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-3A	Apr-92	4.7	17			ND<0.5	ND<0.5	5.9	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-3A	Oct-92	1.1	3.0			ND<0.5	ND<1.0	1.7	ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND				
T-3A	Oct-93	ND<5.0	280			120	ND<10	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-3A	Feb-94	3.7	130			60	ND<1.0	4.6	ND<0.5	1.2	ND	ND	ND	1.7	ND	ND<0.5	ND				
T-3A	Oct-94	ND<5.0	170			130	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-3A	Oct-95	2.9	180			121.2	ND<2.0	3.1	ND<1.0	1.1	ND	ND	ND	1.9	ND	ND<1.0	ND				
T-3A	Oct-96	2.0	110	52	0.6		ND<0.5	0.9	ND<0.5	ND<0.5	ND	ND	ND	0.8	ND	ND<0.5	ND				
T-3A	Oct-97	ND<5.0	180	100	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<10	ND				
T-3A	Oct-98	ND<5.0	140	84	ND<5.0		ND<5.0		ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-3A	Oct-99	2.1	95	78	ND<2.0		9		ND<2.0	ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND				
T-3A	Oct-00	ND<10	140	71	ND<10		ND<10		ND<10	ND<10	ND<10	ND	ND	ND<10	ND	ND<10	ND<10				
T-3A	Oct-01	ND<5.0	130	48	ND<5.0		ND<5.0		ND<5.0		ND<5.0	ND<10	ND<5.0	ND<10	ND<5.0	ND<5.0					
T-3A	Oct-02	ND<2.0	180	17	ND<2.0		ND<2.0		ND<2.0	<u> </u>	ND<2.0	ND<4.0	ND<4.0	ND<2.0		ND<2.0					
T-3A	Oct-02	ND<5.0	150	43	ND<5.0		ND<5.0		ND<5.0	1	ND<5.0	l	ND<4.0	ND<2.0		1	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-3A	Oct-04	2.3	130	41	1.7		ND<1.0		ND<1.0	1	ND<1.0		ND<2.0	ND<1.0			ND<1.0		140.0		
T-3A	Oct-05	4.1	180	48	1.3		ND<1.0			ND<1.0	ND<1.0	ļ	ND<2.0	ND<1.0	ND<1.0						
T-3A	Oct-06	3.7	230	49	ND<2.0		ND<1.0			ND<1.0	ND<1.0	1		ND<1.0		ND<1.0					
T-3A	Oct-07	ND<5.0	210	15	ND<2.0		ND<5.0	ND<2.0				ND<5.0	ND<4.0		ND<2.0	-	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-3A	Oct-08	ND<5.0	140	8.0	ND<3.0		ND<3.0	ND<3.0	ND<2	ND<3.0	ND<2	ND<5.0	ND<3.0	ND<2	ND<5.0	 ND<2	ND<3.0	ND<5.0	ND<5.0	ND<5.0	ND<15
			1					1		1		1				<u> </u>	<u> </u>	1			
T-3A	Oct-09	1.7	170	44	2.2		ND<0.50						ND<0.50						ND<0.50		
T-3A	Oct-10	1.1	120	42	1.4			ND<0.50			1		ND<0.50			1			ND<0.50		1
T-3A	Oct-11	1.8	120	38	1.6						1	.	ND<0.50				.		ND<0.50		
T-3A	Oct-12	ND<1.0	120	38	1.9		ND<1.0	1 1		ND<1.0	 			ND<1.0		1		ND<1.0		1	ND<2.0
T-3A	Oct-13	1.9	250	88	2.6		ND<1.0	ND<1.0		ND<1.0		ND<2.0	ND<1.0	0.61 J		<u> </u>	ND<1.0				
T-3A	Apr-14	1.3	140	51	1.6			ND<0.50			1		ND<0.50					ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-3A	Sep-14	1.2	130	65	1.3			ND<0.50				ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
		Per United	States Enviro	nmental Prot	tection Agen	cy approval,	well T-3A v	vas abandoi	ned in No	vember 20)14.						ļ		ļ		
T-6A (ZA)	Mar-84		27	-											ND						
T-6A	Oct-85	ND<0.5	68.5			10	ND<0.5	12	ND<0.5					21	ND	ND<0.5					
T-6A	Jan-87	ND<10	52			ND<10	ND<10			ND<10				37	ND	ND<10					
T-6A	Jan-88	ND<0.5	21			1.6	ND<0.5			ND<0.5				2.1	ND	ND<0.5					
T-6A	May-88	ND<0.5	13			1.5	ND<0.5			ND<0.5				2.1	ND	ND<0.5					
T-6A	Aug-89	ND<0.5	14			0.7	ND<0.5			ND<0.5				0.7	ND	ND<0.5					
T-6A	Oct-90	ND<0.5	9.0			ND<0.5	ND<0.5			ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-6A	Oct-91	ND<0.5	7.8			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-6A	Oct-92	ND<0.5	5.6			ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND				
T-6A	Oct-93	ND<0.5	6.3			ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-6A	Oct-94	ND<5.0	19			ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-6A	Oct-95	ND<1.0	6.5			ND<1.0	ND<2.0	ND<1.0			ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-6A	Oct-96	ND<0.5	7.6	ND<0.5	ND<0.5		ND<0.5				ND	ND	ND	0.8	ND	ND<0.5	ND				
T-6A	Oct-97	ND<0.5	7.4	ND<0.5	ND<0.5		ND<0.5	 			ND	ND	ND	0.6	ND	ND<1.0	ND				
T-6A	Oct-98	ND<1.0	9.4	ND<1.0	ND<1.0		ND<1.0			l	ND	ND	ND	ND<1.0	ND	ND<1.0					
T-6A	Oct-99	ND<1.0	9.4	ND<1.0	ND<1.0		ND<1.0	ND<1.0			ND	ND	ND	ND<1.0	ND	ND<1.0					
T-6A	Oct-00	ND<1.0	7.3	ND<1.0	ND<1.0		ND<1.0	ND<1.0				ND	ND	ND<1.0		ND<1.0					
T-6A	Oct-00	ND<0.5	9.2	1.7	ND<0.5		ND<0.5			ND<0.5	.	1	ND<1.0	ND<2.0			ND<0.5				
T-6A	Oct-02	0.72	9.3	2.7	ND<0.5		ND<0.5				1			ND<2.0	ND<2.0	1					
1-0/1	1 00:-02	0.12	1 3.5	1 4.1	1 140 -0.5		140-0.5	1 140 -0.5	ND ~0.0	140 70.3	140-0.3	110-1.0	140 - 1.0	110 10.5	140 -2.0	110,0.0	14070.3	L			L

T-6A		Oct-03	0.61	8.5	2.5	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0	ND<0.5	ND<2.0	ND<0.5	ND<0.5				
T-6A		Oct-04	ND<0.5	14	30	0.92		ND<0.5	ND<0.5				ND<1.0		ND<0.5		ļ	ND<0.5				
T-6A		Oct-05	ND<0.5	21	28	0.51		ND<0.5		ND<0.5			ND<0.5	ND<1.0	ND<0.5			ND<0.5				
T-6A		Oct-06	ND<0.5	24	22	ND<0.5		ND<0.5		ND<0.5	ND<0.5	ND<0.5		ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5				
T-6A		Oct-07	ND<0.5	22	17	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND<1.0	0.62	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0
T-7A (ZA)		Aug-84	120	6,800			2,200	ND ND	ND	ND	ND ND				ND	ND ND	ND ND					
T-7A		Nov-84	15	3,100			1,800		22							ND						
T-7A		Oct-85	28	3,800			4,200	340	87	ND<50	ND<50				ND<50	ND	ND<50					
T-7A		Oct-85	ND<50	3,600			3,700	ND<50	ND<50	ND<50	ND<50				690	ND	ND<50					
T-7A		Jan-86	ND<25	2,500			1,400	ND<25	ND<25	ND<25	ND<25					ND	ND<25					
T-7A		Apr-86	ND<10	1,400			ND<10	ND<10	ND<10	1,800	ND<10				ND<10	ND	ND<10					
T-7A		Jul-86	ND<25	3,300			1,900	ND<25	ND<25	ND<25	ND<25				ND<25	ND	ND<25					
T-7A		Sep-86	ND<12	2,200			1,500	ND<12	ND<12	ND<12	ND<12				ND<12	ND	ND<12					
T-7A		Jan-87	ND<12	3,000			2,500	ND<12	ND<12 ND<10	ND<12	ND<12				ND<12	ND	ND<12					
T-7A		Apr-87	ND<10	2,800			3,500	ND<10	ND<10	59	ND<10				ND<10	ND	ND<10					
T-7A		Jun-87	-	3,000	<u> </u>					ND<25	ND<25				ND<25		!					
T-7A		Oct-87	ND<25 ND<25	2,700			3,900 1,600	ND<25	ND<25 ND<25	ND<25	ND<25 ND<25				ND<25 ND<25	ND ND	ND<25 ND<25					
T-7A			ND<25 ND<50	3,200			570	ND<25			ND<25 ND<50						!					
		Jan-88						ND<50	ND<50	ND<50					ND<50	ND	ND<50					
T-7A T-7A		Jun-88	ND<25 ND<10	1,200 970			610 320	ND<25 ND<10	ND<25	ND<25 ND<10	ND<25 ND<10				360 ND<10	ND ND	ND<25 ND<10					
		Aug-88						!	ND<10	.							1					
T-7A		Nov-88	ND<10	1,200			300	ND<10	ND<10	ND<10	ND<10				ND<10	ND	ND<10					
T-7A		Feb-89	ND<25	1,200			190	ND<25	ND<25	ND<25	ND<25				ND<25	ND	ND<25					
T-7A		Feb-89	ND<25	1,100			200	ND<25	ND<25	ND<25	ND<25				ND<25	ND	ND<25					
T-7A		May-89	5.7	1,300			320	ND<5.0	ND<5.0	ND<5.0	ND<5.0				ND<5.0	ND	ND<5.0					
T-7A		Aug-89	ND<10	1,400			340	ND<10	38	ND<10	ND<10				ND<10	ND	ND<10					
T-7A		Oct-89	ND<5.0	1,000			340	ND<5.0	ND<5.0	ND<5.0	ND<5.0				ND<10	ND	ND<5.0					
T-7A		Oct-89	6	820			320	ND<2.0	5	ND<2.0	ND<2.0				ND<2.0	ND	ND<2.0					
T-7A		Jan-90	ND<10	1,300			640	ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND				
T-7A		Apr-90	ND<10	1,300			760	ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND				
T-7A		Jul-90	ND<20	810			20	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-7A		Oct-90	ND<5.0	820			870	ND<5.0		ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-7A		Apr-91	ND<5.0	720			640	ND<5.0		ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-7A		Jul-91	10	720			720	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	14	ND	ND<5.0	ND				
T-7A		Jan-92	ND<10	1,200			980	ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND				
T-7A		Apr-92	5.0	980			425	ND<0.5	3	1	2	ND	ND	ND	1	ND	ND<0.5	ND				
T-7A		Oct-92	2.4	670			222	ND<1.0	2	ND<0.5	1	ND	ND	ND			ND<0.5	ND				
T-7A		Oct-93	ND<5.0	480			90	ND<10	ND<5.0			ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-7A		Oct-94	450	1,700			3,300	ND<250	ND<250		ND<250	ND	ND	ND	ND<250	ND	ND<250					
T-7A		Nov-94	ND<25	410			100	ND<25		ND<25		ND	ND	ND	ND<25	ND	ND<25	ND				
T-7A		Oct-95	ND<5.0	400			47	ND<10	ND<5.0			ND	ND	ND	5.9	ND	ND<5.0	ND				
T-7A		Oct-96	1.8	260	32	ND<1.0		ND<1.0	ND<1.0			ND	ND	ND	1.5	ND	ND<1.0	ND				
T-7A		Oct-97	ND<10	270	33	ND<10		ND<10		ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<20	ND<50				
T-7A		Oct-98	ND<5.0	200	18	ND<5.0		ND<5.0	ND<5.0			ND	ND	ND	ND<5.0	ND	ND<5.0	ND<25				
T-7A		Oct-99	ND<2.0	130	21	ND<2.0		ND<2.0	ND<2.0		ND<2.0	ND	ND	ND	ND<2.0	ND		ND<2.0				
T-7A	Dup	Oct-99	ND<2.0	140	20	ND<2.0		ND<2.0	ND<2.0		ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND				
T-7A		Oct-00	ND<10	120	87	ND<10		ND<10		ND<10	ND<10	ND<10	ND	ND	ND<10	ND	ND<10					
T-7A		Jun-01	1.6	220	76	1.4		ND<2.0	ND<1.0		ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	1.2	ND<2.0
T-7A		Oct-01	ND<5.0	260	71	ND<5.0		ND<5.0	ND<5.0		ND<5.0	ND<5.0	ND<10	ND<5.0	ND<10	ND<5.0	!	ND<5.0				
T-7A		Jan-02	ND<10	290	120	ND<10		ND<10		ND<10	ND<10	ND	ND<20	ND<10	ND<10	ND	ND<10	ND<10				
T-7A		Apr-02	ND<10	350	160	ND<10		ND<10		ND<10	ND<10	ND	ND<20		ND<10	ND	ND<10					
T-7A		Oct-02	ND<5.0	510	190	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<10	ND<5.0	ND<20	ND<5.0	ND<5.0				

							-			·				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			·	·	,			
T-7A		Apr-03	ND<1.0	430	210	2.6		ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-7A		Oct-03 (1)	ND<5.0	480	268	8.7		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-7A		Apr-04	2.0	340	170	4.4		ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0
T-7A		Oct-04	ND<2.0	370	110	4.6		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<4.0	ND<2.0	ND<8.0	ND<2.0	ND<2.0				
T-7A		Oct-05	ND<2.0	340	130	3.3		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
T-7A		Apr-06	ND<5.0	360	180	9.9		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-7A		Jul-06	ND<5.0	450	140	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-7A		Oct-06	ND<4.0	330	85	ND<4.0		ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<8.0	ND<4.0	ND<4.0	ND<8.0	ND<4.0	ND<4.0				
T-7A	Dup	Oct-18	ND<2.0	320	76	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	ND<2.0				
T-7A		Jan-07		430	120	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-7A		May-07	ND<5.0	290	100	ND<5.0			ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		5.4	ND<5.0	ND<5.0	ND<5.0	ND<15
T-7A		Oct-07	ND<5.0	370	80	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-7A	Dup	Oct-07	ND<5.0	380	81	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-7A		Oct-08	ND<4	370	79	4.2		ND<4	ND<4	ND<4	ND<4	ND<4	ND<8	ND<4	ND<4	ND<8	ND<4	ND<4	ND<4	ND<4	ND<4	ND<8
T-7A	Dup	Oct-18	ND<4	330	75	ND<4		ND<4	ND<4	ND<4	ND<4	ND<4	ND<8	ND<4	ND<4	ND<8	ND<4	ND<4	ND<4	ND<4	ND<4	ND<8
T-7A		Oct-09	1.6	180	52	2.4		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-7A	Dup	Oct-18	1.6	180	54	1.9		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-7A		Oct-10	ND<5.0	220	56	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-7A	Dup	Oct-18	ND<5.0	190	51	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-7A		Oct-11	0.67	140	180	2.1		1.8	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-7A	Dup	Oct-18	ND<2.5	140	170	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0
T-7A		Oct-12	ND<2.5	56/63	230	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0
T-7A		Oct-13	1.6 J	240	77	1.7 J		ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A	Dup	Oct-18	1.7 J	250	81	1.8 J		ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A		Oct-14	ND<2.5	230	75	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A	Dup	Oct-18	ND<2.5	170	64	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A		Jun-15	1	220	83	2		ND<0.50	ND<0.50	1	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-7A	Dup	Oct-18	ND<5.0	190	90	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0				
T-7A	-	Oct-15	ND<2.5	170	79	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A		May-16	ND<2.5	140	81	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A	Dup	Oct-18	ND<2.5	170	100	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A	-	Oct-16	ND<2.5	190	80	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A		Oct-17	ND<2.5	160	84	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A	Dup	Oct-17	ND<2.5	160	82	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5				
T-7A		Oct-18	1.4	140	81	1.3		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	1.5	ND<1.0	ND<0.50	ND<0.50				
T-7A	Dup	Oct-18	1.5	150	82	1.3		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	1.6	ND<1.0	ND<0.50	ND<0.50				
T-8A (ZA)		Aug-84	130	2,800			2,100	ND	ND	ND	ND				ND	ND	ND					
T-8A		Nov-84	37	2,200			1,300		9.8							ND						
T-8A		Oct-85	44	2,200			2,400	ND<25	77	ND<25	ND<25				320	ND	ND<25					
T-8A		Apr-86	20	1,100			ND<10	ND<10	ND<10	ND<10	ND<10				ND<10	ND	800					
T-8A		Jul-86	ND<10	1,400			650	ND<10	ND<10	ND<10	ND<10				ND<10	ND	ND<10					
T-8A		Jan-87	23	1,200			540	ND<5.0	24	ND<5.0	ND<5.0				ND<5.0	ND	53					
T-8A		Jul-87	ND<10	1,700			1,000	ND<10	25	ND<10	ND<10				12	ND	ND<10					
T-8A		Oct-87	9.8	690			350	ND<5.0	17	ND<5.0					ND<5.0	ND	ND<5.0					
T-8A		Oct-87	ND<0.5	830			290	ND<1.0	ND<0.5	ND<0.5					ND<1.0	ND						
T-8A		Jan-88	23	570			330	ND<5.0	18	ND<5.0					27	ND	ND<5.0					
T-8A		Aug-88	9.0	370			180	ND<5.0	10	ND<5.0					25	ND	ND<5.0					
T-8A		Nov-88	7	260			ND<2.0	ND<2.0	7	ND<2.0	ND<2.0				4	ND	9					
T-8A		Feb-89	ND<10	200			24	ND<10	ND<10	ND<10	ND<10				ND<10	ND	ND<10					
T-8A		Aug-89	14	340			62	ND<1.0	10	4	1				5	ND	ND<1.0					
T-8A		Oct-89	7	250			65	2	7	2	ND<1.0				3	ND	8					
					i	1										· · · · · · · · · · · · · · · · · · ·	-					

					1	T			<u></u>			7					7		7	***************************************		
T-8A		Feb-90	2.6	76			20	ND<0.5	1	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-8A		Apr-90	3.0	99			28	ND<0.5	1		ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-8A		Jul-90	ND<2.0	120			30	ND<2.0	ND<2.0	ND<2.0		ND	ND	ND	ND<2.0	ND	ND<2.0	ND				
T-8A		Oct-90	2.8	100			50	ND<0.5	4	ND<0.5		ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-8A		Jan-91	1.0	100			58	ND<1.0	1	ND<1.0		ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-8A		Apr-91	ND<2.0	160			63	ND<2.0	1 1	ND<2.0		ND	ND	ND	ND<2.0	ND	ND<2.0	ND				
T-8A		Jul-91	4.6	110			49	ND<0.5	2	ND<0.5		ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-8A		Apr-92	8.0	400			140	ND<2.0	19	ND<2.0	ND<2.0	ND	ND	ND	21	ND	ND<2.0	ND				
T-8A		Oct-92	7.3	260			ND<50	2	4	ND<0.5	ND<0.5	ND	ND	ND		ND	1	ND				
T-8A		Apr-93	2.6	160			110	ND<5.0	4	ND<2.5	ND<2.5	ND	ND	ND	ND<2.5	ND	ND<2.5	ND				
T-8A		Oct-93	ND<5.0	250			200	ND<10	7	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-8A		Apr-94	4.9	280			221	ND<0.5	8	3	ND<0.5	ND	ND	ND	3	ND	1	ND				
T-8A		Oct-94	ND<25	300			330	ND<25	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<25	ND				
T-8A		Apr-95	ND<5.0	230			200	ND<10	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-8A		Oct-95	4.4	260			222.5	ND<4.0	4.9	2.1	ND<2.0	ND	ND	ND	4	ND	ND<2.0	ND				
T-8A		Apr-96	4.0	230			180	ND<2.5	3	ND<2.5	ND<2.5	ND	ND	ND	ND<2.5	ND	ND<2.5	ND				
T-8A		Oct-96	2.4	160	160	3.7		ND<0.5	2.3	8.0	1.1	ND	ND	ND	1.5	ND	2.2	ND				
T-8A		Apr-97	3.8	200	160	12		ND<1.0	2.9	ND<1.0	1.3	ND	ND	ND	2.7	ND	2.2	ND				
T-8A		Oct-97	ND<10	210	170	ND<10		ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<20	ND<10				
T-8A		Apr-98	ND<5.0	170	110	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND	ND	ND	ND<20	ND	ND<5.0	ND<5.0				
T-8A		Oct-98	3.0	110	120	ND<2.0		ND<2.0	1	ND<2.0	ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND<2.0				
T-8A		Apr-99	ND<10	110	72	ND<10		ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND<10				
T-8A		Oct-99	2.6	130	77	ND<2.0		ND<2.0	1	ND<2.0	ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND<2.0				
T-8A		Oct-00	ND<10	150	64	ND<10		ND<10	ND<10	ND<10	ND<10	ND<10	ND	ND	ND<10	ND	ND<10	ND<10				
T-8A	Dup	Oct-00	ND<10	140	62	ND<10		ND<10	ND<10	ND<10	ND<10	ND<10	ND	ND	ND<10	ND	ND<10	ND<10				
T-8A		Jun-01	2.6	150	64	1.4		ND<2.0	1.6	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	2.2	ND<2.0
T-8A		Aug-01	5.9	180	72	1.4		ND<2.0		ND<1.0			ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8A		Oct-01	2.8	190	68	1.4		ND<2.0	1.5	ND<1.0			ND<2.0	ND<2.0		ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8A		Nov-01	ND<5.0	140	62	ND<5.0		ND<5.0	1 1	ND<5.0			ND<5.0	ND<5.0		ND		ND<5.0		ND<5.0	ND<5.0	ND<10
T-8A		Jan-02	2.0	170	62	1.5		ND<2.0	1	ND<1.0			ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	6.8	2.7
T-8A		Mar-02	2.4	140	41	1.3		ND<2.0	-	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8A		Jul-02	ND<1.0	120	44	ND<1.0		ND<2.0		ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8A		Oct-02	2.4	130	54	1.4		14	1.2	2.8	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0	1.3	ND<1.0	1.2	ND<2.0
T-8A T-8A		Jan-03	3.3	140 150	49 45	1.2		ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<1.0		ND<1.0		 ND < 4.0		ND <0.0
		Mar-03	1.9 2.0	150	1	ND<1.0		ND<2.0	ND<1.0 ND<1.0				ND<2.0 ND<2.0	ND<2.0 ND<2.0		ND<1.0		ND<1.0		ND<1.0 ND<1.0	ND<1.0 ND<1.0	ND<2.0
T-8A T-8A		Jul-03 Oct-03	2.0 ND<5.0	140	41	1.2 ND<5.0		ND<2.0 ND<5.0	ND<1.0 ND<5.0				ND<2.0 ND<5.0	ND<2.0 ND<5.0		ND<1.0 ND<5.0		ND<1.0 ND<5.0	 ND<5.0	ND<1.0	ND<1.0 ND<5.0	ND<2.0
T-8A		Jan-04	ND<5.0	110	33	ND<5.0		ND<5.0	ND<5.0				ND<5.0	ND<5.0		ND<5.0			l	ND<5.0	ND<5.0	ND<10
T-8A		Apr-04	3.2	120	45	2.5		ND<5.0	ND<3.0				ND<3.0	ND<5.0		ND<3.0		ND<5.0		ND<3.0	ND<5.0	ND<10
T-8A		Jul-04	ND<5.0	150	50	ND<5.0		ND<1.0					ND<1.0	ND<1.0		ND<1.0				ND<1.0	ND<1.0	ND<2.0
T-8A		Oct-04	2.8	130	39	2.3		ND<3.0	 			ND<1.0	ND<3.0		ND<1.0	ND<4.0	ND<1.0	ND<3.0				
T-8A		Apr-05	ND<5.0	140	44	ND<5.0		ND<1.0					ND<2.0	ND<2.0		ND<4.0					ND<5.0	ND<15
T-8A		Jul-05	ND<5.0	170	58	ND<5.0		ND<5.0	ND<5.0				ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-8A		Oct-05	ND<5.0	200	130	ND<5.0		ND<5.0	ND<5.0				ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-8A		Jan-06	ND<5.0	63	44	ND<5.0		5.8	ND<5.0				ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-8A		Apr-06	ND<5.0	86	83	ND<5.0		0.6 ND<5.0	ND<5.0				ND<5.0	ND<5.0		ND<5.0				ND<5.0	ND<5.0	ND<15
T-8A		Jul-06	ND<5.0	210	94	ND<5.0		ND<5.0	ND<5.0				ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-8A		Oct-06	ND<5.0	57	34	ND<5.0		ND<5.0	ND<5.0				ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-8A		Jan-07	8.2	180	81	ND<5.0		ND<5.0	ND<5.0					ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-8A		Apr-07	ND<5.0	170	63	ND<5.0		ND<5.0	ND<5.0					ND<5.0		ND<5.0			1	ND<5.0	ND<5.0	
T-8A		Oct-07	ND<5.0	59	71	ND<5.0		36.0			ND<5.0		ND<5.0			ND<5.0				ND<5.0		
1-0/1		00:-07	140-0.0	J#	1 / 1	ט.ט~טאו		1 30.0	140-0.0	140-0.0	ט.ט~ט.ט	L	ט.טרעווו	ט.ט~ט.ט		140-0.0		ט.טרעויו	140-0.0	ט.טרעוו	ט.טרעווו	_ ויטיוט

		T		T 66	T	1	1 1 2	T					T	T 0. #	I	T	T.,,	T			
T-8A	Oct-08	0.76	84	28	1.1		4.9			ND<0.5			ND<0.5	-			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1
T-8A	Feb-09	ND<0.50	21	23	1.4		9.2			ND<0.50											
T-8A	Oct-09	0.54	36	33	3.2		21			ND<0.50				<u> </u>					ND<0.50		ND<1.0
T-8A	Apr-10	ND<0.50	43	26	2.1		3.7			ND<0.50						1			ND<0.50		ND<1.0
T-8A	Oct-10	0.99	87	65	2.8		4.6			ND<0.50						<u> </u>			ND<0.50		
T-8A	Oct-11	1.6	140	69	2.1		1.3			ND<0.50					1	1			ND<0.50		ļ
T-8A	Apr-12	1.1	110	67	1.1		0.88			ND<0.50			ND<0.50	-				l	ND<0.50		ND<1.0
T-8A	Oct-12	ND<2.5	160	82	ND<2.5		ND<2.5			ND<2.5	ND<2.5	ND<5.0		ND<2.5			ND<2.5			ND<2.5	ND<5.0
T-8A	May-13	1.5	110	58	2.8		0.71	ND<0.50		ND<0.50			ND<0.50					ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-8A	Oct-13	2.0	110	57	3.6		0.91	0.25 J	0.69	0.46 J			ND<0.50				ND<0.50				
T-8A	Apr-14	ND<2.5	130	63	2.8		ND<2.5		ND<2.5	ND<2.5			ND<2.5	ND<2.5			ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.
T-8A	Oct-14	1.7	110	56	2.6		ND<0.50	ND<0.50					ND<0.50	<u> </u>	ND<1.0						
T-8A	Jun-15	0.66	67	81	1.8		5.4			ND<0.50			ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-8A	Oct-15	0.82	62	100	1.7		2.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-8A	May-16	ND<0.50	19	110	1.6		3.1	ND<0.50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-8A	Oct-16	0.58	56	90	1.8		2.4	ND<0.50	0.6	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0 *F	ND<0.50	ND<0.50				
T-8A	Oct-17	0.6	45	110	1.7		6.0	ND<0.50	0.54	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-8A	Oct-18	0.67	75	85	1.3		2.9	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-9A (ZA)	Aug-84	280	2,000			7,900	3,500	ND	47	ND				ND	ND	ND					
T-9A	Nov-84	31	1,800			4,200		12							ND						
T-9A	Oct-85	320	5,600			ND<50	ND<50	60	ND<50	ND<50				1,200	ND	ND<50					
T-9A	Mar-86	120	1,100			2,500	710	ND<10	ND<10	ND<10					ND	ND<10					
T-9A	Mar-86	ND<10	1,700			2,100	ND<10	ND<10	ND<10	ND<10					ND	ND<10					
T-9A	Mar-86	ND<10	2,500			2,000	ND<10	ND<10	ND<10	ND<10					ND	ND<10					
T-9A	Apr-86	ND<10	1,100			1,600	780	ND<10	ND<10	ND<10				ND<10	ND	ND<10					
T-9A	Jul-86	21	1,100			1,200	540	ND<10	ND<10	ND<10				ND<10	ND	82					
T-9A	Jul-87	ND<10	1,000			1,400	390	13	ND<10	ND<10				18	ND	36					
T-9A	Oct-87	44	770			430	220	22	ND<5.0	ND<10				55	ND	ND<5.0					
T-9A	Jan-88	ND<25	1,700	I		1,400	230	ND<25	ND<3.0	ND<3.0				ND<25	ND	ND<25					
			· · · · · · · · · · · · · · · · · · ·	-		· · · · · · · · · · · · · · · · · · ·	1	1						l	ND	!					
T-9A	May-88	25	1,000			710	170	26	13	ND<5.0				24		63					
T-9A	Oct-89	69	820	-		770	200	14	3	ND<2.0				ND<2.0	ND	110					
T-9A	Feb-90	ND<50	2,800			200	ND<50	ND<50	ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<50	ND				
T-9A	Apr-90	30	2,600			1,500	120	ND<20	ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-9A	Jul-90	45	1,100			880	64	8.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	11	ND				
T-9A	Oct-90	20	1,400			930	ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND				
T-9A	Jan-91	30	1,700			700	ND<10	10	10	ND<10	ND	ND	ND	ND<10	ND	ND<10					
T-9A	Apr-91	20	1,000			940	ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	22	ND				
T-9A	Jul-91	26	720			580	ND<5.0	17	ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0					
T-9A	Jan-92	22	850			770	ND<5.0	24	ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-9A	Apr-92	16	740			380	ND<5.0	18	ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-9A	Oct-92	13	470			233	8.7	9.3	5.8	3.2	ND	ND	ND		ND	21	ND				
T-9A	Apr-93	8.0	420			240	30	8.0	ND<5.0	ND<5.0	ND	ND	ND	5.0	ND	16	ND				
T-9A	Oct-93	7.0	330			320	ND<10	8.0	ND<5.0	ND<5.0	ND	ND	ND	8.0	ND	17	ND				
T-9A	Apr-94	9.2	270			263	6.7	12	9.1	2.3	ND	ND	ND	ND<0.5	ND	22	ND				
T-9A	Oct-94	ND<25	260			160	ND<25	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<25	ND				
T-9A	Apr-95	4.7	180			170	ND<6.0	3.8	ND<3.0	ND<3.0	ND	ND	ND	ND<3.0	ND	12	ND				
T-9A	Oct-95	5.7	210			252.9	ND<5.0	5.4	3.2	ND<2.5	ND	ND	ND	3.5	ND	14	ND				
T-9A	Apr-96	6.2	240			293	ND<2.5	5.3	2.7	ND<2.5	ND	ND	ND	ND<2.5	ND	12	ND				
T-9A	Oct-96	4.2	190	270	3.5		ND<1.0	4.4	2.7	1.7	ND	ND	ND	2.8	ND	11	ND				
T-9A	Apr-97	5.0	200	250	16		1.4	3.9	1.9	1.7	ND	ND	ND	3.3	ND	9.8	ND				
T-9A	Oct-97	ND<10	210	290	ND<10		ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<20	ND<10				
1 77	1 00:-97	1 140 - 10	210	1 200	140,10	L	1 140 - 10	1,0,10	140 110	140 110	ואט	ואט	1 140	140 10	1 140	1140 -20	140,10	L	1		

			1			· · · · · · · · · · · · · · · · · · ·	 									T	T		T		
T-9A		Apr-98	ND<5.0	150	170	ND<5.0	 ND<5.0	l	ND<5.0	ND<5.0	ND	ND	ND	ND<20	ND	ND<5.0	ND<5.0				
T-9A		Oct-98	3.4	130	150	2.1	 ND<2.0		ND<2.0		ND	ND	ND	ND<2.0	ND	6.0	ND<2.0				
T-9A		Apr-99	ND<10	140	140	ND<10	 ND<10	l	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND<10				
T-9A		Oct-99	3.5	130	100	2.2	 ND<2.0	l — I	ND<2.0	ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND<2.0				
T-9A		Oct-00	ND<10	140	110	ND<10	 ND<10		ND<10	ND<10	ND<10	ND	ND	ND<10	ND	ND<10	ND<10				
T-9A	Dup	Oct-00	ND<10	140	110	ND<10	 ND<10		ND<10	ND<10	ND<10	ND	ND	ND<10	ND	ND<10					
T-9A		Aug-01	ND<5.0	120	110	ND<5.0	 ND<5.0	l	ND<5.0	ND<5.0	ND	ND<5.0	ND<5.0	ND<25	ND		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
T-9A		Oct-01	ND<5.0	110	87	ND<5.0	 ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<20	ND<20	ND<5.0	ND<5.0				
T-9A		Jan-02	3.0	140	110	ND<2.5	 11	l	ND<2.5	ND<2.5	ND	ND<5.0	ND<2.5	ND<2.5	ND	3.9	ND<2.5				
T-9A		Apr-02	3.0	130	100	ND<2.5	 9.0		ND<2.5	ND<2.5	ND	ND<5.0	ND<2.5	ND<2.5	ND	3.0	ND<2.5				
T-9A		Jul-02	ND<2.5	120	95	ND<2.5	 7.3	l	ND<2.5	ND<2.5	ND	ND<5.0	ND<2.5	ND<2.5	ND	ND<2.5	ND<2.5				
T-9A		Oct-02	ND<5.0	110	66	ND<5.0	 8.1	l – – – –	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<10	ND<5.0	ND<20	ND<5.0	ND<5.0				
T-9A		Apr-03	1.8	120	87	1.4	 ND<2.0	ļi	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-9A		Oct-03	ND<5.0	120	81	ND<5.0	 24		ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-9A		Jan-04	ND<5.0	92	56	ND<5.0	 ND<5.0	l	ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-9A		Apr-04	2.9	85	81	2.3	 7.2			ND<1.0		ND<1.0	ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0
T-9A		Oct-04	ND<5.0	110	74	ND<5.0	 5.3			ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Jan-05	ND<5.0	120	92	ND<5.0	 ND<5.0	l	ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Apr-05	ND<5.0	7.5	320	ND<5.0	 8.2		ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Jul-05	ND<5.0	140	90	ND<5.0	 ND<5.0	.	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Oct-05	ND<5.0	56	170	ND<5.0	 7.3	l – l	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Jan-06	ND<5.0	56	140	ND<5.0	 21	L	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Apr-06	ND<5.0	47	190	8.1	 6.8	l	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Jul-06	ND<5.0	60	130	ND<5.0	 ND<5.0	l	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Oct-06	ND<5.0	100	100	ND<5.0	 ND<5.0		ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Jan-07	ND<5.0	130	120	ND<5.0	 ND<5.0	l – – – –	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		May-07	ND<5.0	98	92	ND<5.0	 ND<5.0	l	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Oct-07	ND<5.0	120	130	ND<5.0	 ND<5.0	L	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-9A		Oct-08	1.3	50	98	2.7	 1.2	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<2	3.1	ND<1	ND<1	ND<1	ND<1	ND<2
T-9A		Oct-09	1.5	66	82	3.0	 2.0	ND<0.50	0.58	ND<0.50			ND<0.50		ND<1.0	4.0			ND<0.50	ND<0.50	ND<1.0
T-9A		Oct-10	0.83	48	88	2.2	 3.5	ND<0.50 N		ND<0.50			ND<0.50		ND<1.0	2.6			ND<0.50	ND<0.50	ND<1.0
T-9A		Oct-11	1.6	73	100	2.9	 2.2	ND<0.50	0.55	ND<0.50			ND<0.50	l	ND<1.0	3.7			ND<0.50	ND<0.50	ND<1.0
T-9A		Oct-12	0.9	50	82	3.3	 0.91	ND<0.5	0.54	ND<0.5	ND<0.5	ND<1.0		ND<0.5	ND<1.0	3	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0
T-9A		Oct-13	0.97	67	74	2.9	 0.81		0.44 J	0.47 J	ND 40 50		ND<0.50		ND<1.0	3.1	ND<0.50				
T-9A		Oct-14	1.2	70	91	3.4	 ND<0.50	ND<0.50	0.71					ND<0.50		3.4	ND<0.50				
T-9A		Oct-15	0.00	69	66	J J		ND<0.50 N									ND<0.50				
T-9A		May-16	0.88	56	81	2.6	 ND<0.50	ND<0.50 N						ND<0.50		2.6	ND<0.50				
T-9A		Oct-16	1 0.76	64	78	3	 ND<0.50	ND<0.50 N								3	ND<0.50				
T-9A		Oct-17	0.76	48	77	2.5		ND<0.50 N						ND<0.50			ND<0.50				
T-9A		Oct-18	0.90	200	75	2.1 ND-5.0	 	ND<0.50 N							ND<1.0	2.3	ND<0.50	 ND<5.0	 ND5 0	 ND<5.0	 ND<15
T-13A (ZA)		Nov-05	ND<5.0	200	98	ND<5.0	ND<5.0						ND<5.0		ND<5.0				ND<5.0		ND<15
T-13A		Jan-06	ND<5.0	210	98	ND<5.0	 ND<5.0						ND<5.0		ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<15
T-13A		Apr-06	ND<5.0	180	140	6.2	 ND<5.0						ND<5.0		ND<5.0			ND<5.0		ND<5.0	ND<15
T-13A		Jul-06	ND<5.0	200	120	ND<5.0	 ND<5.0	ND<5.0				ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-13A		Oct-06	ND<5.0	210	99	ND<5.0	 ND<5.0					ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-13A		Jan-07	6.2	300	120	ND<5.0	 ND<5.0						ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-13A		Apr-07	ND<5.0	200	75	ND<5.0	 ND<5.0	ND<5.0					ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-13A		Jul-07	ND<5.0	180	64	ND<5.0	 ND<5.0	ND<5.0					ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-13A		Oct-07	ND<5.0	48	260 ND<25	ND<5.0	 ND<5.0	ND<5.0			 ND-25		ND<5.0	ND-25	ND<5.0	ND-25		ND<5.0	ND<5.0	ND<5.0	ND<15
T-13A		Oct-08	ND<25	38	ND<25	ND<25	 ND<25	ND<25	ND<70.0 ND<70.0	ND<25	ND<0.50	ND<1.0	ND<25	ND<25	ND<50	ND<25	ND<25	ND<25	ND<25	3100	ND<50
T-13A		Feb-09	ND<0.50	30	32	2.1	 8.3	ND<0.50	^	14ט<0.50	0.50 ט>עאו	ND<1.0	0.50 אטאון	ND<0.50	1.0	2.1	2.9				

T-13A		Oct-09	ND<0.50	26	40	2.40		8.0	ND<0.50	<u>.ט>טאר</u> ∪	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	0.52	1.2	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-13A		Apr-10	ND<0.50	57	31	1.4		4.2	ND<0.50	<u>14D</u> C0.3	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	0.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-13A		Oct-10	0.52	72	51	2.2		6.9	ND<0.50	0.5 0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1400.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-13A		Oct-11	0.84	70	66	2.8		10.0	ND<0.50	0.54	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	14DC0.3	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-13A		Apr-12	ND<0.50	0.74	18	1.6		5.8	ND<0.50	0.5 0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	0.52	ND<0.50	ND<0.50	ND<0.50	0.56	ND<1.0
T-13A		Oct-12	ND<0.50	1.2	20	2.3		17	ND<0.50	ت.ن¢عهر 0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	0.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-13A		May-13	ND<0.50	3.1	31	4.1		16	ND<0.50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-13A	Dup	May-18	ND<0.50	2.9	30	3.9		16	ND<0.50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-13A		Oct-13	ND<0.50	1.2	79	8.2		38	ND<0.50	ND<0.50	0.59		ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-13A		Apr-14	ND<0.50	1.8	49	4.4		19	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-13A	Dup	Apr-18	ND<0.50	1.4	50	5.5		20	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-13A		Oct-14	ND<0.50	1.4	76	4.6		33	ND<0.50	ND<0.50	0.56	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-13A	Dup	Oct-18																				
T-13A		Jun-15	ND<0.50	1.7	80	3.3		23	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-13A	Dup	Jun-18	ND<0.50	2.1	96	3.9		28	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-13A		Oct-15	ND<0.50	23	120	4.0		18	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-13A		May-16	ND<0.50	21	71	4.9		15	ND<0.50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-13A	Dup	May-18	ND<0.50	21	71	5.0		15	ND<0.50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-13A		Oct-16	ND<0.50	14	62	2.4		17	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-13A		Oct-17	ND<0.50	41	81	3.4		11	ND<0.50	ND<0.50	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-13A		Oct-18	ND<0.50	29	85	2.5		28	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-14A (ZA)		Nov-05	ND<5.0	130	59	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-14A		Jan-06	ND<5.0	150	63	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-14A		Apr-06	6.8	140	92	8		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-14A		Oct-06	ND<5.0	200	57	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-14A		Apr-07	ND<5.0	160	58	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-14A		Jul-07	ND<5.0	120	51	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-14A		Oct-07	ND<5.0	54	200	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-14A		Oct-08	ND<20	ND<20	45	ND<20		ND<20	ND<20	ND<20	ND<20	ND<20	ND<40	ND<20	ND<20	ND<40	ND<20	ND<20	ND<20	ND<20	1300	ND<40
T-14A		Feb-09	ND<0.50	6.2	15	2.0		7.8	ND<0.50	0.0	0.59	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	2.4	2.2				
T-14A		Oct-09	ND<0.50	9.0	16	1.9		7.4	ND<0.50	<u>₩₽</u> ₽₽	0.53	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.8	1.9	ND<0.50	ND<0.50	0.54	ND<1.0
T-14A		Apr-10	ND<0.50	28	37	2.2		9.7	ND<0.50	<u>™⊳Ço.</u> 5	0.51	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.7	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-14A		Oct-10	ND<0.50	36	42	2.4		9.0	ND<0.50	<u>™⊃^Q∪.5</u>	1 000	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.9	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-14A		Oct-11	ND<0.50	28	38	2.8		6.7	ND<0.50	мьСо.э	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-14A		Apr-12	ND<0.50	3.0	42	3.1		16	ND<0.50	<u>™D^QU.J</u>				ND<0.50			2.3					
T-14A		Oct-12	ND<0.50	0.96	27	3.8		26	ND<0.50	<u>14⊡^C∪.∪</u>	0.71	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	2				ND<0.50	
T-14A		May-13	ND<0.50	4.2	33	4.4		25	ND<0.50					ND<0.50							ND<0.50	
T-14A		Oct-13	ND<0.50	2.0	53	6.3		35	ND<0.50				ND<1.0	ND<0.50	ND<0.50	ND<1.0	2.1	0.19 J				
T-14A		Apr-14	ND<0.50	4.1	43	4.2		22	ND<0.50	ND<0.50	0.53	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-14A		Oct-14	ND<0.50	3.6	62	5.1		29	ND<0.50					ND<0.50 *				ND<0.50				
T-14A		Oct-15	ND<0.50	23	56	3.9		34	ND<0.50					ND<0.50				ND<0.50				
T-14A		May-16	ND<0.50	20	40	3.8	-	21	ND<0.50					ND<0.50				ND<0.50				
T-14A		Oct-16	ND<0.50	23	42	3.4		23	ND<0.50			ND<0.50		ND<0.50				ND<0.50				
T-14A		Oct-17	1	55	55	2.7		20			ND<0.50			ND<0.50				ND<0.50				
T-14A		Oct-18	ND<0.50	21	65	2.3		25			ND<0.50						1	ND<0.50				
T-15A (ZA)		Nov-05	ND<5.0	8.2	160	ND<5.0		37			ND<5.0			ND<5.0		ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<15
T-15A		Jan-06	ND<5.0	ND<5.0	110	ND<5.0		83			ND<5.0			ND<5.0		ND<5.0				ND<5.0	ND<5.0	ND<15
T-15A		Apr-06	ND<5.0	51	140	11		29	ND<5.0					ND<5.0		ND<5.0			ND<5.0		ND<5.0	ND<15
T-15A		Jul-06	ND<5.0	130	91	ND<5.0		8.2			ND<5.0			ND<5.0		ND<5.0				ND<5.0	ND<5.0	ND<15
T-15A		Oct-06	ND<5.0	140	66	ND<5.0		ND<5.0			ND<5.0			ND<5.0		ND<5.0				ND<5.0	ND<5.0	ND<15
T-15A		Jan-07	5.2	170	87	ND<5.0		7.4			ND<5.0			ND<5.0		ND<5.0					ND<5.0	
					- •							ı					1					

T-15A	May-07	ND<5.0	140	66	ND<5.0		8.2	ND<5.0 N				ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-15A	Jul-07	ND<5.0	130	63	ND<5.0		ND<5.0	ND<5.0 N	ID<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-15A	Oct-07	ND<5.0	160	75	ND<5.0		ND<5.0	ND<5.0 N	ID<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-15A	Oct-08	1.6	140	53	2.2	-	1.5	ND<1 1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2
T-15A	Oct-09	ND<0.50	92	37	2.4		0.61	ND<0.50	0.64	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	0.90	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-15A	Oct-10	1.3	110	48	2.2		0.50	ND<0.50	0.54	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	0.91	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-15A	Oct-11	3	130	61	3.8		ND<2.5	ND<2.5 N	ID<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0
T-15A	Apr-12	2.2	130	58	3.2		ND<0.50	ND<0.50	0.64	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.1	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-15A	Oct-12	ND<2.5	130	62	3.8		ND<2.5	ND<2.5 N	ID<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0
T-15A	May-13	1.8	100	50	2.7		ND<0.50	ND<0.50	0.61	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-15A	Oct-13	2.0	100	62	2.9		0.46 J	0.35 J	0.70	0.49 J		ND<1.0	ND<0.50	0.36 J	ND<1.0	1.2	ND<0.50				
T-15A	Apr-14	1.9	100	49	2.7		ND<0.50	ND<0.50	0.59	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.1	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-15A	Oct-14	2.2	140	51	3.4		1	l .	0.83		ND<0.50		ND<0.50		ND<1.0	1.5	ND<0.50				
T-15A	Oct-15	2.1	100	58	2.7			l	0.6	ND<0.50	.		ND<0.50		ND<1.0	1.4	ND<0.50				
T-15A	May-16	1.8	100	57	2.4		ND<0.50		0.55	ND<0.50			ND<0.50		ND<1.0	1.2	ND<0.50				
T-15A	Oct-16	1.3	90	50	2.3		ND<0.50	l l	0.62	ND<0.50	ł		ND<0.50		ND<1.0	0.83	ND<0.50				
T-15A	Oct-17	1.8	110	62	2.5		ND<0.50	 	0.62	ND<0.50			ND<0.50		ND<1.0	1.4	ND<0.50				
T-15A	Oct-18	1.4	99	76	2.1		0.56	ND<0.50 NI			ŧ		ND<0.50		ND<1.0	1.1	ND<0.50				
		ND<5.0	24	ļ	ND<5.0			 		ND<5.0	 		ļ			 	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-16A (ZA) T-16A	Nov-05	ND<5.0	20	160	ND<5.0		32 45			ND<5.0		ND<5.0 ND<5.0	ND<5.0 ND<5.0		ND<5.0 ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0 ND<5.0	ND<15 ND<15
	Jan-06			120															1	l	
T-16A	Apr-06	ND<5.0	17	160	9.5		26	l				ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-16A	Oct-06	ND<5.0	80	100	ND<5.0		8.2	.				ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-16A	May-07	ND<5.0	120	71	ND<5.0		7.3	l				ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-16A	Oct-07	ND<5.0	79	160	ND<5.0		8.8	l — I — I — I — I — I — I — I — I — I —	ID<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.1		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-16A	Oct-08	0.9	63	77	2.3		2.6		0.53	ND<0.5	ND<0.5	ND<1		ND<0.5	ND<1	1.4	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1
T-16A	Oct-09	0.59	40	44	2.2		0.84	ND<0.50 N			!		ND<0.50	l	ND<1.0	0.61	ND<0.5	0.6	ND<0.50	0.56 B	ND<1.0
T-16A	Oct-10	0.81	72	64	2.2		0.76	ND<0.50 N			l		ND<0.50		ND<1.0	0.89			ND<0.50		ND<1.0
T-16A	Oct-11	1.6	91	67	2.9		0.53		0.7	ND<0.50	ND<0.50		ND<0.50		ND<1.0	1.5			ND<0.50		ND<1.0
T-16A	Oct-12	1	68	63	3.2		2.1	L	0.57		ND<0.50		ND<0.50		ND<1.0	1.1		ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-16A	Oct-13	1.2	94	69	3.6		3.2	0.20 J	0.58	0.58		ND<1.0	ND<0.50	0.23 J	ND<1.0	1.4	ND<0.50				
T-16A	Oct-14	1.7	97	78	3.7		2.5		0.70	0.58	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.7	ND<0.50				
T-16A	Oct-15	0.61	38	72	2.9		23	1 ND<0.50 1	0.5 0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1	ND<0.50				
T-16A	Oct-16	1.1	52	67	2.9		16	ND<0.50	^∪.∪ ^	0.5	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.2	ND<0.50				
T-16A	Oct-17	1	59	72	2.5		3.4	ND<0.50	0.51	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.2	ND<0.50				
T-16A	Oct-18	1.3	69	71	2.2		1.5						ND<0.50			1.3	ND<0.50				
T-17A (ZA)	Nov-11	1.7	110	6.6	ND<0.50		ND<0.50	ND<0.50	0.0701	ND<0.50	ND<0.50	ND<1.0	ND<0.50	0.50	ND<1.0	C.02-CIVIT	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-17A	Apr-12	1.3	96	5.8	ND<0.50		ND<0.50	ND<0.50 19	יסייםו	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	כ.ס>טוון	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-17A	Oct-12	1.3	92	4.5	ND<0.50		ND<0.50	ND<0.50	יסייםו	ND<0.50	ND<0.50	ND<1.0	ND<0.50	0.62	ND<1.0	כ.טייםאון	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-17A	May-13	0.80	71	14	ND<0.50			ND<0.50 N							ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-17A	Oct-13	1.3	86	21	0.42 J			ND<0.50					ND<0.50								
T-17A	Apr-14	0.87	57	16	ND<0.50			ND<0.50 N			ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-17A	Oct-14	0.88	62	30	0.57			ND<0.50 NI													
T-17A	Jun-15	1.4	76	16	0.51		0.71	ND<0.50 N													
T-17A	Oct-15	1.1	63	12	ND<0.50		1	ND<0.50 NI			ł	i		: :	ND<1.0	ND<0.50	ND<0.50				
T-17A	May-16	1.2	74	6.5	ND<0.50		ND<0.50	ND<0.50		ND<0.50			ND<0.50		ND<1.0	ס.ט־טאו	ND<0.50				
T-17A	Oct-16	0.85	50	15	ND<0.50		0.94	ND<0.50 NI	 D<0_50	ND<0.50	ND<0.50				ND<1.0	ND<0.50	ND<0.50				
T-17A	Oct-17	1.2	72	13	ND<0.50		ND 40 E0	NID 40 EQ IN	יט~טוי	ND 40 E0		ND 44 0	ND 40 50	NID 40 EO	ND-40	ייסירטוזו.	ND ZO EO				
T-17A	Oct-18	0.86	69	7.3	ND<0.50		ND<0.50	ND<0.50	ᠤ᠙᠐᠂᠑	ND-0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND-1.0	14DC0.3	ND<0.50				
T-19A (ZA)		ND<5.0	140	7. 3 55	ND<0.50		ND<0.50						ND<0.50		ND<1.0		ND<0.50	ND-50	ND<5.0	ND<5.0	ND<15
	Sep-07			!	1		1	ND<5.0 N								<u> </u>			<u> </u>		
T-19A	Oct-07	ND<5.0	53	140	ND<5.0		8 ND<50				1		ND<5.0		ND<5.0	1			ND<5.0	ND<5.0	ND<15
T-19A	Oct-08	ND<50	ND<50	ND<50	ND<50		ND<50	ND<50 N	אט<50	ND<20	ND<20	100 >טא	ND<20	ND<20	100 >טא	ND<20	ND<20	MD<20	ND<50	3500	ND<100

							·		100 1811 1		,						·	•	~		·
T-19A		Feb-09	ND<0.50	ND<0.50	1.9	0.65	 1.0	ND<0.50	14D \0.5		1	<u> </u>	ND<0.50			1.0	6.0				
T-19A	Dup	Feb-18	ND<0.50	ND<0.50	2.6	0.78	 1.4	ND<0.50	ND 10.0	ND<0.50	<u> </u>		ND<0.50			1.2	6.3				
T-19A		Oct-09	ND<0.50	ND<0.50	4.6	0.84	 2.8	ND<0.50	14D 10.0		ł	1	ND<0.50			1.3	3.9		ND<0.50		
T-19A		Apr-10	ND<0.50	0.98	1.6	ND<0.50	 0.88	ND<0.50	14D 10.0		ND<0.50	1	ND<0.50		ND<1.0	0.65	1.3		ND<0.50		l
T-19A	Dup	Apr-18	ND<0.50	0.89	1.6	ND<0.50	 0.81	ND<0.50	14D 10.0		<u> </u>		ND<0.50		ND<1.0	0.56	1.1		<u> </u>	ND<0.50	
T-19A		Oct-10	ND<0.50	0.89	7.7	0.72	 10	ND<0.50	14D 10.0		!	ļ	ND<0.50		ND<1.0	0.87	1.2		1	ND<0.50	ND<1.0
T-19A		Oct-11	ND<0.50	4.1	16	1.60	 10	ND<0.50	14D 40.0		l		ND<0.50		ND<1.0	1.80	1.3		ND<0.50	ND<0.50	1
T-19A		Apr-12	ND<0.50	ND<0.50	2.1	1.2	 0.92	ND<0.50	14D 10.0		ND<0.50		ND<0.50		ND<1.0	1.60	4.3		ND<0.50	0.77	ND<1.0
T-19A		Oct-12	ND<0.50	ND<0.50	9.1	1.3	 5.6	ND<0.50	^		ND<0.50	1	ND<0.50		ND<1.0	1.8	3.8		ND<0.50	0.8	ND<1.0
T-19A		May-13	ND<0.50	ND<0.50	3.4	0.84	 4.3			ND<0.50	1	l	ND<0.50		ND<1.0	0.98	2.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-19A		Oct-13	ND<0.50	ND<0.50	2.6	0.87	 2.3			ND<0.50	<u> </u>		ND<0.50		ND<1.0	0.92	2.6				
T-19A		Apr-14	ND<0.50	ND<0.50	3.7	1.4	 3.1				.		ND<0.50		ND<1.0	0.75	1.3	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-19A		Oct-14	ND<0.50	ND<0.50	15	1.9	 11				!	1	ND<0.50		ND<1.0	0.93	1.8				
T-19A		Jun-15	ND<0.50	ND<0.50	12	3.2	 32						ND<0.50		ND<1.0	2.0	1.4				
T-19A		Oct-15	ND<0.50	ND<0.50	13	3.0	 33	1	ND<0.50	ND<0.50		1	ND<0.50			1.1	0.75				
T-19A		May-16	ND<0.50	ND<0.50	6.7	1.5	 12	ND<0.50	Λ	ND<0.50	!	!	ND<0.50		ND<1.0	0.78	0.80				
T-19A		Oct-16	ND<0.50	ND<0.50	3.7	2.6	 15		ND<0.50	ND<0.50		!	ND<0.50		ND<1.0	0.87	0.52				
T-19A		Oct-17	ND<0.50	ND<0.50	3.3	2.2	 17	ND<0.50	14D 10.0	ND<0.50		l	ND<0.50		ND<1.0	0.82	ND<0.50				
T-19A	***************************************	Oct-18	ND<0.50	ND<0.50	11	2.1	 26	ND<0.50			ND<0.50	ļ	ND<0.50	ND<0.50	ND<1.0	1.1	ND<0.50				
T-23A (ZA)		Sep-07	7.7	210	21	ND<5.0	 ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-23A		Oct-07	ND<5.0	130	120	ND<5.0	 ND<5.0	1	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0	-	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-23A		Oct-08	ND<10	16	12	ND<10	 ND<10	ND<10	ND<10	ND<10	ND<10	ND<20	ND<10	ND<10	ND<20	ND<10	ND<10	ND<10	ND<10	890	ND<20
T-23A		Feb-09	ND<0.50	17	29	2.1	 9.7	ND<0.50	14D 10.0	ND<0.50	!	1	ND<0.50		ND<1.0	1.5	1.8				
T-23A		Oct-09	ND<0.50	11	14	2.0	 3.1	ND<0.50	14D 0.0		ND<0.50		ND<0.50		ND<1.0	0.55	ND		ND<0.50		
T-23A		Apr-10	ND<0.50	41	19	2.8	 2.0	טכ.ט>עאן	14DQ0.5	ND<0.50			ND<0.50		ND<1.0	0.54			ND<0.50		
T-23A		Oct-10	0.60	51	37	4.3	 3.5	טכ.ט>טאו	14D 0.0		ND<0.50		ND<0.50		ND<1.0	0.56			ND<0.50		
T-23A		Oct-11	0.62	62	39	4.2	 2.0	טכ.ט~טאו	עסיים		ND<0.50		ND<0.50			ND<0.50			ND<0.50	-	1
T-23A		Apr-12	ND<0.50	2.0	58	2.0	 3.2	ND<0.50	14DC0.3		ND<0.50		ND<0.50			1.1	0.79		ND<0.50	3.5	ND<1.0
T-23A	Dup	Apr-18	ND<0.50	2.0	61	1.9	 3.0	ND<0.50	14DC0.0		ND<0.50	1	ND<0.50			1.0 0.0	0.76		ND<0.50	3.3	ND<1.0
T-23A		Oct-12	ND<0.50	36	73	2.4	 6.6	ND<0.50	Λ		ND<0.50	l	ND<0.50		ND<1.0	_			ND<0.50	ND<0.50	ND<1.0
T-23A		May-13	ND<0.50	48	57	4.4	 7.6	ND<0.50	ND<0.50			1	ND<0.50			ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-23A		Oct-13	ND<0.50	19	54	12	 7.6	ND<0.50	14DQ0.5	ND<0.50		1	ND<0.50			ואטרט.ט	ND<0.50				
T-23A		Apr-14	ND<0.50	45	60	6.0	 7.1	ND<0.50	ייסטי		ND<0.50		ND<0.50			ואטלט.ט		ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-23A		Oct-14	ND<0.50	32	51	3.3	 6.5	ND<0.50	ער פיים				ND<0.50			ואטלט.ט	טכ.ט>טאו				
T-23A		Jun-15	0.83	78	53	2.5	 4.7	ND<0.50 ND<0.50		ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ואטרָט.ט	ND<0.50				
T-23A		Oct-15	0.71	64	61	1.8	 7.8								NIP 44 A	1110 -0.0	ND<0.50 ND<0.50 ND<0.50				
T-23A		May-16	0.56	58	51	1.4	 5.7	ND<0.50 ND<0.50	TAPOO'S	ND<0.50			ND<0.50		ND<1.0	ואט?ט.ט	ND<0.50 ND<0.50				
T-23A		Oct-16	0.57	60	51	1.3	 4.2	ND<0.50	מטים ווו	ND<0.50		ND<1.0	ND<0.50	ND<0.50	0.1.7טאר ט.ז ~טאר	ואטרט.ט	ND<0.50 ND<0.50				
T-23A		Oct-17	0.69 F1	78 ~~	55	1.3 F1	 8.8 F1	ND<0.50	AE453	ND<0.50		□ 1	E1	E1E2	E2	מטים וו	ND<0.50				
T-23A		Oct-18	0.57	59	49	0.95	 9.7	ND<0.50	NID (5.6	ND<0.50			ND<0.50		ND<1.0		ND<0.50	ND :5.0			
T-25A (ZA)		Sep-07	5.5	160	52	ND<5.0	 ND<5.0	ND<5.0	ND<5.0	ND<5.0	1	1	ND<5.0		ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<15
T-25A		Oct-07	ND<5.0	66	160	ND<5.0	 9.6			ND<5.0			ND<5.0		ND<5.0			ND<5.0		ND<5.0	ND<15
T-25A		Oct-08	1.0	42	38	2.2	 7.6			ND<0.5			ND<0.5		ND<1	4.2	ND<0.5			ND<0.5	ND<1
T-25A		Feb-09	1.3	41	42	2.3	 9.7						ND<0.50			1	ND<0.50		 ND -0 50		
T-25A		Oct-09	ND 4.0	26	17	2.0	 3.3						ND<0.50							ND<0.50	
T-25A		Apr-10	1.0	39	34	2.3	 6.8			ND<0.50				ND<0.50		1				ND<0.50	1
T-25A		Oct-10	0.8	47	50	2.5	 7.3	ND<0.50			l .		ND<0.50							ND<0.50	
T-25A		Oct-11	1.5	63	50	3.0	 2.1	ND<0.50					ND<0.50			1				ND<0.50	
T-25A		Apr-12	ND<0.50	1.1	19	2.7	 7.3	ND<0.50				1	ND<0.50			3.1				ND<0.50	
T-25A		Oct-12	ND<0.50	0.86	10	3.5	 12	ND<0.50			0.50>טאו		ND<0.50			2.3				ND<0.50	
T-25A		May-13	ND<0.50	1.4	22	3.4	 22	ND<0.50	ND<0.50	J 0.65		1.0>טעון	ND<0.50	0.50 טעוו	1.0>טאן	2.2	0.50 טעען	0.50 טאון	0.50 טארן	ND<0.50	י 1.0>טער

T-25A	Oct-13	ND<0.50	0.57	27	4.7		42	ND<0.50	ND<0.50				ND<0.50			2.5	ND<0.50				
T-25A	Apr-14	ND<0.50	0.50	32	4.0		35	ND<0.50	ND<0.50	0.59	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	2.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-25A	Oct-14	ND<0.50	4.0	39	4.1		35	ND<0.50	ND<0.50	0.60	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	2.3	ND<0.50				
T-25A	Jun-15	0.71	25	61	8.8		38	ND<0.50	ND<0.50	0.61	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	2.5	ND<0.50				
T-25A	Oct-15	0.64	27	60	3.1		39	ND<0.50	ND<0.50	0.57	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.9	ND<0.50				
T-25A	May-16	0.85	44	46	2.1		23	ND<0.50	ס.ט	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	1.8	ND<0.50				
T-25A	Oct-16	1.6	68	43	2.5		19	ND<0.50	ND<0.50	0.52	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	2	ND<0.50				
T-25A	Oct-17	1.3	57	49	2.0		20	ND<0.50	טייםעון	0.51		1	ND<0.50	ND<0.50	ND<1.0	2.8	ND<0.50				
T-25A	Oct-18	1.1	51 F1	52	1.5		7.5	ND<0.50	יסיס מאו	ND<0.50	ND<0.50	•	ND<0.50			1.4	ND<0.50				
36S (ZA)	Jun-82	18	710			ND<10	ND	42	ND<10	ND<10				19	ND	ND					
36S	Aug-82	10	590			55	ND	19	ND<2.0	ND<2.0				2	ND	ND					
36S	Apr-83	13	400			23	ND	16	ND	ND				12	ND	ND					
36S	May-83	ND	82			ND	ND	ND	ND	ND				ND	ND	ND					
36S	Aug-83	19	470			ND<1.0	ND	36	16	ND<1.0				ND<1.0	ND	ND					
36S	Mar-84		360												ND						
36S		8	230			12	ND	23	2	ND				40	ND	I					
36S	Aug-84 Nov-84	4.7	150	1		8.8		+	1			<u> </u>			ND	ND					
		4.7 ND<5.0	250			1	 ND<5.0	19	 ND<5.0	 ND<5.0					ND	ND					
36S	Oct-85					23	l	65	1					90	l	ND ND					
36S	Jan-86	11	190			25	ND<2.0	42	3.4	ND<2.0				ND<2.0	ND	ND<2.0					
36S	Apr-86	3.4	130			10	ND<0.5	36	3.5	1.5				ND<0.5	ND	ND<0.5					
36S	Jul-86	3.3	59			7.7	ND<0.5	32	3.2	1.6				15	ND	ND<0.5					
36S	Sep-86	5.3	200			5.75	ND<1.0	27.5	2.9	2.1				16.5	ND	7.95					
36S	Jan-87	ND<10	140			ND<10	ND<10	34	ND<10	ND<10				28	ND	ND<10					
36S	Apr-87	4	200			12	ND<2.5	34	6	ND<2.5				19	ND	ND<2.5					
36S	Jun-87	ND<1.0	170			11	ND<1.0	15	1.6	ND<1.0				8.2	ND	ND<1.0					
36S	Oct-87	3.5	160			10	ND<1.0	20	2.5	1.7				14	ND	ND<1.0					
36S	Jan-88	5.8	170			15	ND<1.0	23	3.8	1.3				14	ND	ND<1.0					
36S	May-88	3.9	140			26	ND<1.0	20	3.3	1.6				13	ND	1.8					
36S	Oct-89	4	130			13	ND<0.5	5.7	0.8	ND<0.5				2	ND	ND<0.5					
36S	Oct-92	2.1	35			ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND<0.5				
36S	Oct-93	ND<2.5	66			ND<2.5	ND<5.0	ND<2.5	ND<2.5	ND<2.5	ND	ND	ND	ND<2.5	ND	ND<2.5	ND<2.5				
36S	Oct-94	ND<5.0	19			ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND<5.0				
36S	Oct-95	ND<1.0	21			ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND<1.0				
36S	Oct-96	0.7	25	6.1	3.0		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND<0.5				
36S	Oct-97+	ND<0.5	20	16	5.2		ND<0.5			ND<0.5	ND	ND	ND	ND<0.5	ND	1	ND<0.5				
36S	Oct-99	1.2	50	83	4.4		ND<1.0			ND<1.0		ND	ND	1.0	1		ND<1.0				
36S	Oct-00+	1.3	83	100	5.6		ND<1.0	1.6	1.2	0.9	ND	ND	ND	1.8			ND<0.5				
36S	Oct-01+	2.1	140	110	2.8		ND<0.5	2.5	1.1	1.0	ND	ND	ND	1.8		!	ND<0.5				
36S	Oct-02+	1.8	140	70	1.9		ND<0.5	1.7	0.8	0.7	ND	ND	ND	1.2		1	ND<0.5				
36S	Oct-03+	1.7	100	53	1.6		1.1	1.2	0.7	0.7	ND	ND	ND	ND<1.0	ND		ND<0.5				
36S	Oct-04+	1.8	91	34	1.1		ND<0.5	1.1	0.6	0.7	ND	ND	ND	1.9	ND	1	ND<0.5				
36S	Oct-05+	2.1	91	22	0.8		ND<1.0	1.1	0.6	ND<0.5	ND	ND	ND	0.6	ND	!	ND<0.5				
36S	Oct-06+	2.6	98	20	0.8		ND<1.0	0.9	0.6	ND<0.5	ND	ND	ND	0.8	ND	1	ND<0.5				
36S	Oct-07+	1.5	70	15	0.9		ND<0.3	ND<0.7	0.8	ND<0.3	ND	ND	 	ND<0.7	ND	1	ND<0.3				
		-		1			 		ŧ				ND	-		1					
36S	Oct-08+	2.4	98	13	0.6		ND<0.5	0.7	ND<0.5	ND<0.5				ND<2.0		ND<0.5					
36S	Oct-09+	2.2	80	9.3	ND<0.5		ND<0.5	0.6	ND<0.5	ND<0.5				ND<2.0		ND<0.5					
36S	Oct-10+	2.0	75	11	0.6		ND<0.5	0.7	0.5	ND<0.5				ND<2.0		ND<0.5					
36S	Oct-11	1.8 J	73	8	ND<0.5		ND<0.5	0.7	0.5	ND<0.5				ND<2.0		ND<5.0					
36S	Oct-12	2.0 J	<u>1</u>	10	ND<0.5		ND<0.5	0.6	0.5	ND<0.5				ND<2.0		ND<5.0					
36S	Oct-13	2.3	74	8.1	ND<0.5		ND<0.5	0.5	ND<0.5	ND<0.5				ND<2.0		ND<5.0					
36S	Oct-14	2.2	73	13	0.8		1.7	0.6	0.6	ND<0.5				ND<2.0		ND<0.5					

36S		Oct 15	2.8	71	9	ND<0.5		ND<0.5	ND<0.5	I NIDZO E	ND<0.5			1	ND<2.0		ND<0.5				
		Oct-15	-	71				1							ND<2.0		1		 		
36S		Oct-16	2.1		93	ND<0.50		ND<0.50	0.52	d	ND<0.50				ļ		ND<0.50		 		
36D (ZA)		Aug-82	6.8	500			52	ND	19	ND<2.0	ND<2.0		ND		ND<2.0	ND	ND		 		
36D		May-83	14	9,200			ND	ND	18	ND	ND		ND		ND	ND	ND		 		
36D		Jul-83	8	650			38	ND	18	2	2		ND		ND	ND	ND		 		
36D		Aug-83	15	600			18		36	13	16		ND		ND<1.0	ND			 		
36D		Mar-84		260									ND			ND			 		
36D		Aug-84	6	180			12	ND	19	2	ND		ND		30	ND	ND		 		
36D		Nov-84	4.2	160			10		26				ND			ND			 		
36D		Oct-85	16	220			17	ND<5.0	77	ND<5.0	ND<5.0		ND		120	ND	ND<5.0		 		
36D		Apr-86	3	130	***		12	ND<0.5	39	4.3	1.9		ND		ND<0.5	ND	ND<0.5		 		
36D		Jul-86	3.6	60			10	ND<0.5	43	4.8	2.3		ND		25	ND	ND<0.5		 		
36D		Sep-86	20	170			8.6	ND<1.0	40	5.1	3.5		ND		17	ND	18		 		
36D		Jan-87	ND<10	170			ND<10	ND<10	28	ND<10	ND<10		ND		54	ND	ND<10		 		
36D		Apr-87	3	160			13	ND<1.0	25	4.7	1.7		ND		16	ND	18		 		
36D		Jun-87	5.9	170			14	ND<1.0	22	2.9	1.9		ND		21	ND	24		 		
36D		Oct-87	3.3	68			16	ND<0.5	29	3.4	2.3		ND		22	ND	14		 		
36D		Jan-88	4.1	100			20	ND<1.0	34	3.5	1.9		ND		30	ND	9.4		 		
36D		May-88	4.2	170	***		47	ND<1.0	31	5.5	2.6		ND		20	ND	11		 		
36D		Aug-88	5	150			53	ND<1.0	30	5.6	2.8		ND		34	ND	11		 		
36D		Nov-88	3.2	180			37	ND<1.0	14	3.5	1.6		ND		16	ND	13		 		
36D		Feb-89	ND<5.0	180			36	ND<5.0	8	ND<5.0	ND<5.0		ND		12	ND	ND<5.0		 		
36D		Feb-89	ND<2.0	61			21	ND<2.0	4	ND<2.0	ND<2.0		ND		ND<2.0	ND	5		 		
36D		Feb-89	ND<2.0	51			17	ND<2.0	3	ND<2.0	ND<2.0		ND		ND<2.0	ND	3		 		
36D		May-89	ND<2.5	ND<2.5			ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND		ND<2.5	ND	ND<2.5		 		
36D		Aug-89	4	200			27	ND<2.0	10	6	ND<2.0		ND		7	ND	8		 		
36D		Oct-89	4.3	120			23	ND<0.5	9.6	2.7	0.8		ND		7.4	ND	ND<0.5		 		
36D		Jan-90	3.0	170			26	ND<1.0	4.0	2.0	ND<1.0	ND	ND	ND	1.0	ND	4.0	ND	 		
36D		Apr-90	3.0	170			18	ND<1.0	2.0	1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	4.0	ND	 		
36D		Jul-90	2.7	110			31	ND<0.5	2.7	1.3	0.9	ND	ND	ND	1.3	ND	5.0	ND	 		
36D		Oct-90	2.6	120			37	ND<0.5	2.7	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	2.1	ND	 		
36D		Jan-91	2.0	120			39	ND<1.0	1.0	1.0	1.0	ND	ND	ND	ND<1.0	ND	3.0	ND	 		
36D		Apr-91	ND<2.0	180			48	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND	 		
36D		Jul-91	2.0	130			32	ND<1.0	1.0	ND<1.0	1.0	ND	ND	ND	1.0	ND	3.0	ND	 		
36D		Oct-91	2.5	120			41	ND<0.5	2.2	1.8	1.2	ND	ND	ND	0.6	ND	2.3	ND	 		
36D		Jan-92	1.6	170			48	ND<1.0	2.9	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	1.6	ND	 		
36D		Apr-92	4.0	180			25	ND<1.0	3.0	1.0	2.0	ND	ND	ND	ND<1.0	ND	ND<1.0		 		
36D		Oct-92	2.1	92			6.4	ND<1.0	1.0	•	ND<0.5	ND	ND	ND		ND	1.6	ND	 		
36D		Oct-93	ND<5.0	94			ND<5.0	ND<10		ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0	ND	 		
36D		Oct-94	ND<5.0	66			ND<5.0	ND<5.0	ND<5.0			ND	ND	ND	ND<5.0	ND	ND<5.0	ND	 		
36D		Oct-95	ND<1.0	25			2.1	ND<2.0		ND<1.0		ND	ND	ND	ND<1.0	ND	ND<1.0	ND	 		
36D		Oct-96	1.2	48	34	ND<0.5		ND<0.5		ND<0.5		ND	ND	ND	ND<0.5	ND	0.6	ND	 		
36D		Oct-97+	ND<0.5	52	91	1.2		ND<0.5	2.1	ND<0.5		ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 		
36D		Apr-98+	ND<5.0	81	130	ND<5.0		ND<5.0		ND<5.0	l	ND	ND	ND	ND<20	ND	ND<5.0	ND	 		
36D		Oct-99	ND<2.0	85	120	2.7		ND<2.0	2.6	ND<2.0	ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND	 		
36D		Oct-00+	1.6	110	97	2.2		ND<1.0	1.9	1.0	0.8	ND	ND	ND	1.6	ND	0.7	ND	 		
36D	Dup	Oct-00+	1.6	100	91	2.5		ND<1.0	1.8	1.1	0.7	ND	ND	ND	1.5	ND	0.7	ND	 		
36D		Oct-01+	0.9	67	48	1.1		ND<0.5	1.2	0.6	ND<0.5	ND	ND	ND	1.4	ND<1.0	ND<0.5	ND	 		
36D		Oct-02+	1.8	150	90	2.3		ND<0.5	1.7	1.2	1.0	ND	ND	ND	1.9	ND	1.1	ND	 		
36D		Apr-03	ND<1.0	69	40	ND<1.0		8.2	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0	 ND<1.0	ND<1.0	ND<2.0
36D		Oct-03+	1.7	110	57	1.5		0.9	1.3	0.9	0.8	ND	ND	ND	1.1	ND	0.8	ND	 		

36D	Apr-04	ND<1.0	45	27	2.5		12	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0		ND<1.0	T	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0
36D	Oct-04+	1.6	85	46	1.7		2.4	1.1	0.8	0.6	ND	ND	ND	1.7	ND	0.8	ND				
36D	Oct-05+	ND<0.5	4.6	1.5	ND<0.5		0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<1.0	ND	ND<0.5	ND				
36D	Oct-06+	2.1	92	42	1.6		0.6	0.9	1.0	0.7	ND	ND	ND	1.2	ND	ND<0.5	ND<0.5				
36D	Oct-07+	ND<0.5	17	6.1	ND<0.5		ND<0.5	ND<0.5	ND<0.5	0.7 ND<0.5	0.8	ND	ND	ND<0.5	ND	ND<0.5	ND<0.5				
36D	Oct-08+	0.7	27	5.8	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5				ND<0.3		ND<0.5					
		_	-	40			!		l		.	1		l		!				l	
36D	Oct-09+	ND<0.5	19	1	1.1		ND<0.5	ND<0.5	0.5	ND<0.5				ND<2.0		ND<0.5					
36D	Oct-10+	1.4	47	34	1.2		ND<0.5	ND<0.5	0.7	ND<0.5				ND<2.0		ND<0.5					
36D	Oct-11	1.6 J	47	29	1.0		ND<0.5	ND<0.5	0.6	ND<0.5				ND<2.0		ND<5.0					
36D	Oct-11	0.7 J	29	34	1.2		ND<0.5	ND<0.5	0.7	ND<0.5				ND<2.0		ND<5.0					
36D	Oct-13	1.3	38	28	0.8		ND<0.5	ND<0.5	0.6	ND<0.5				ND<2.0		ND<5.0					
36D	Oct-14	1.8	56	23	0.9		ND<0.5	ND<0.5	0.6	ND<0.5				ND<2.0		ND<0.5					
36D	Oct-15	1.6	40	12	0.6		ND<0.5	ND<0.5	0.6	ND<0.5				ND<2.0		ND<0.5					
36D	Oct-16	ND<0.50	2.7	0.84	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50		ND<0.50					
36D	Oct-17	ND<0.50	4.2	2.2	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50		ND<0.50					
37S (ZA)	Jul-82	ND<5.0	210			ND<5.0	ND	ND<5.0	ND<5.0	ND<5.0		ND		ND<5.0	ND	ND					
37S	Jun-82	ND<10	2,600			ND<10	ND	ND<10	ND<10	ND<10			ND	370	ND	ND					
37S	Aug-82	9	1,400			27	ND	13	ND<2.0	ND<2.0			ND	78	ND	ND					
37S	Apr-83	10	330			77	ND	ND	ND	ND			ND	120	ND	ND					
37S	May-83	ND	270			17	ND	ND	ND	ND			ND	ND	ND	ND					
37S	Aug-83	34	41,000			4,600	5	13	2.0	1.6			ND	ND<1.0	ND	ND					
37S		37	4,200			290		4	ND	ND	l		ND	190	ND						
37S	Sep-83							· '	}												
	Sep-83	47	3,500			240		5	ND	ND			ND	14	ND						
37S	Mar-84		1,400										ND		ND						
37S	Aug-84	8	760			52	ND	4	ND	ND			ND	ND	ND	ND					
37S	Nov-84	6.6	1,300			32		3.2					ND		ND						
37S	Jan-87	ND<5.0	600			25	ND<5.0	ND<5.0	ND<5.0	ND<5.0			ND	52	ND	ND<5.0					
37S	Jan-88	ND<10	1,100			34	ND<10	ND<10	ND<10	ND<10			ND	95	ND	ND<10					
37S	Jun-88	ND<1.0	150			170	ND<1.0	5.8	ND<1.0	ND<1.0			ND	ND<1.0	ND	ND<1.0					
37S	Oct-93	ND<5.0	400			8.0	ND<10	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
37S	Oct-94	ND<5.0	330			ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
37S	Oct-95	ND<1.0	380			7.1	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	3.8	ND	ND<1.0	ND				
37S	Oct-96	1.2	270	6.3	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	2.0	ND	ND<1.0	ND				
37S	Oct-97+	ND<2.5	260	12	ND<2.5		ND<2.5		ND<2.5	ND<2.5	ND	ND	ND	ND<2.5	ND	ND<2.5	ND				
37S	Oct-99	ND<5.0	180	ND<5.0	ND<5.0		ND<5.0	ND<5.0	<u> </u>		ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
37S	Oct-00+	1.2	200	9.7	ND<0.5		1.8			ND<0.5	ND	ND	ND	2.1	ND	ND<0.5	ND				
37S	Oct-01	ND<5.0	140	ND<5.0	ND<5.0		ND<5.0	ND<5.0			ND	ND	ND	ND<20	ND	ND<5.0					
37S	Oct-02+	0.9	170	3.7	ND<0.7		ND<0.7	ND<0.7			ND	ND	ND	ND<2.0	ND	ND<0.7					
37S	Oct-02+	1.3	160	i	ND<0.7	-	ND<0.7				ND	ND	ND	ND<1.4 ND<1.3		ND<0.7					
			.	2.9								1			ND						
37S	Oct-04+	1.2	11	3.3	ND<0.7		ND<0.7	ND<0.7			ND	ND	ND	1.9	ND	ND<0.7	ND				
37S	Oct-05+	1.0	91	5.2	ND<0.7		ND<0.7	ND<0.7			ND	ND	ND	ND<1.4	ND	ND<0.7	ND ND				
37S	Oct-07+	1.0	81	2.4	ND<0.5		ND<0.5				ND	ND	ND	1.8	ND	ND<0.5					
37S	Oct-08+	1.1	81	3.6	ND<0.5		ND<0.5							ND<2.0		ND<0.5					
37S	Oct-09+	1.4	91	2.2	ND<0.5		ND<0.5							ND<2.0		ND<0.5					
37S	Oct-10+	0.9	60	3.7	ND<0.5		ND<0.5							ND<2.0		ND<0.5					
37S	Oct-11	0.8 J	63	2.3	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5				ND<2.0		ND<5.0					
37S	Oct-12	0.8 J	63	2.5	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5				ND<2.0		ND<5.0					
37S	Oct-13	1.0	95	1.6	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5				ND<2.0		ND<5.0					
37S	Oct-14	0.8	83	2.7	ND<0.5		ND<0.5							ND<2.0		ND<5.0					
37S	Oct-15	0.9	49	3.8	ND<0.5		ND<0.5							ND<2.0		ND<5.0					
37S	Oct-16	0.6	43	4.1	ND<0.50			ND<0.50			3			0.66		ND<0.50					
0,0	1 000,10	J 3.0	L '0	1	140 10.00	<u> </u>	1 112 10.00	1.45 .0.00	1.45 .0.00	1.12 .0.00	l	1		0.00		r 12 .0.00		<u> </u>		L	<u> </u>

37S	Oct-17	5.9	420	43	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0				6.7		ND<5.0					
38-S (ZA)	Jun-82	ND<10	1,250			ND<10	ND	ND<10	ND<10	ND<10		ND		103	ND	ND					
38-S	Aug-82	76	40,000			3100	3	6.4	2	2.6		ND		ND<1.0	ND	ND					
38-S	Aug-82	17	2,200			300	ND	ND<2.0	ND<2.0	ND<2.0		ND		35	ND	ND					
38-S	May-83	23	2,000			350	ND	ND	ND ND	ND ND		ND		ND	ND	ND					
38-S	Sep-83	59	2,700			970	ND	ND<2.0	ND<4.0	1		ND		140	ND	ND					
38-S	Sep-83	72	6,300			1700	ND	ND<2.0	4	3		ND		120	ND	ND					
38-S			3,500				<u> </u>					ND	 		ND						
	Mar-84					1100	ND			NID.											
38-S	Aug-84	28	1,400			1100		5	3	ND		ND		ND	ND	ND					
38-S	Nov-84	28	3,200			510		20				ND			ND						
38-S	Oct-85	45	3,700			410	ND<25	33	ND<25	ND<25		ND		590	ND	ND<25					
38-S	Jul-86	ND<5.0	2,800			200	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND		250	ND	ND<5.0					
38-S	Sep-86	ND<25	4,600			120	ND<25	ND<25	ND<25	ND<25		ND		150	ND	ND<25					
38-S	Jan-87	ND<10	2,500			220	ND<10	ND<10	ND<10	ND<10		ND		180	ND	ND<10					
38-S	Apr-87	26	2,700			420	ND<10	74	ND<10	ND<10		ND		91	ND	ND<10					
38-S	Jun-87	260	2,200			910	ND<10	13	ND<10	ND<10		ND		83	ND	ND<10					
38-S	Oct-87	ND<25	2,400			270	ND<25	ND<25	ND<25	ND<25		ND		100	ND	ND<25					
38-S	Jan-88	ND<50	2,900			240	ND<50	ND<50	ND<50	ND<50		ND		ND<50	ND	ND<50					
38-S	May-88	ND<25	3,400			240	ND<25	ND<25	ND<25	ND<25		ND		95	ND	ND<25					
38-S	Oct-94	ND<5.0	910			190	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
38-S	Oct-95	ND<10	1,100			180	ND<20	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND				
38-S	Oct-96	ND<1.7	440	540	4.0		ND<1.7	ND<1.7	2.7	ND<1.7	ND	ND	ND	2.9	ND	ND<1.7	ND				
38-S	Oct-97+	ND<5.0	160	520	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
38-S	Oct-99	ND<5.0	270	240	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
38-S	Oct-00	ND<20	240	240	ND<20		ND<20	ND<20	ND<20	ND<20	ND<20	ND<20	ND<20	ND<20	ND<20	ND<20	ND<20				
38-S	Oct-01	ND<5.0	170	120	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<20	ND<20	ND<5.0	ND<5.0				
38-S	Oct-02	2.6	240	200	6.3		8.6	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<4.0	3.5	ND<8.0	ND<2.0	ND<2.0				
38-S	Oct-03	ND<1.0	51	110	1.2		21		ND<1.0		ND<1.0	ND<2.0	ND<2.0	ND<1.0	ND<4.0	ND<1.0	ND<1.0				
38-S	Oct-04	ND<5.0	190	190	ND<5.0		6.9		ND<5.0		ND<5.0	ND<10	ND<10	ND<5.0	ND<20	ND<5.0					
38-S	Oct-05	2.0	140	68	1.5		14		ND<1.0		ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
38-S	Oct-06	1.5	130	33	ND<1.0		5.8			ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0		ND<1.0	ND<1.0				
38-S	Oct-07	1.3	85	50	0.82		16				ND<0.5	1	ND<0.5	0.61				ND<0.5	ND<0.5	ND<0.5	ND<1.0
38-S	Oct-08	0.65	50	82	2.4		30				ND<0.5	l	ND<0.5	1.0				ND<0.5	ND<0.5	ND<0.5	ND<1
38-S	Oct-09	1.5	150	120	2.8		6.3			ND<0.50		1	ND<0.50	1.1					ND<0.50	ND<0.50	
38-S	Oct-10	1.3	150	130	1.8		5.7	ND<0.50		ND<0.50										ND<0.50	
38-S	Oct-11	ND<2.5	130	140	ND<2.5		6.7			ND<2.5										ND<0.30	
38-S		ND<2.5	32	120			11	ND<2.5					ND<2.5							ND<2.5	
38-S	Apr-12 Oct-12	0.84	91	200	1.4 2.5		11	ND<0.50					ND<0.50							ND<0.50	
				l			1												ND<0.50		
38-S	May-13	ND<2.5	60	180	ND<2.5		7.2	ND<2.5				1	ND<2.5							ND<2.5	ND<5.0
38-S	Oct-13	0.93	96	150	1.7		7.4	ND<0.50					ND<0.50				ND<0.50				
38-S	Oct-14	ND<0.50	45	200	2.3		12	ND<0.50		ND<0.50		1					ND<0.50				
38-S	Oct-15	1.0	83	98	0.98		4.9			ND<0.50							ND<0.50				
38-S	Oct-16	0.6	50	77	0.94		3.1			ND<0.50		1			ND<1.0 *						
38-S	Oct-17	ND<0.50	61	170	1.5		6.7			ND<0.50			ND<0.50				ND<0.50				
38-S	Oct-18	ND<0.50	39	63	ND<0.50		2.3			ND<0.50		 		 	ND<1.0						
DUCTOR-11 (ZA)	Oct-85	13000	32,000			63,000	ND<250			ND<250		ND		ND<250		ND<250					
EDUCTOR-11	Apr-86	4200	24,000			14,000	530			ND<100		ND		ND<100	ND	9,200					
EDUCTOR-11	Jul-86	2700	75,000			28,000	2,000			ND<250		ND		ND<250	ND	7,700					
EDUCTOR-11	Jan-87	2,700	230,000			12,000	ND<500			ND<500		ND		ND<500	ND	6,700					
EDUCTOR-11	Oct-87	3,400	8,400			8,800				ND<1,000		ND		ND<1,000	ND	ND<1,000	-				
EDUCTOR-11	Dec-87	130	62			320	ND<50	ND<50	ND<50	ND<50		ND		ND<50	ND	ND<50					

CEDUCTOR 44							4.0	Lubiae	L N.D. 0.5	LUB A E	T 115 .0 5	T	T5	1	LID OF	T 1.15	Lub o s	T	ı	T		
EDUCTOR-11		Feb-89	3.6	62			1.6	ND<0.5	ND<0.5	ND<0.5			ND		ND<0.5	ND	ND<0.5					
EDUCTOR-11		May-89	51	970			120	ND<10	ND<10	ND<10	ND<10		ND		ND<10	ND	ND<10					
EDUCTOR-11		Oct-89	3.3	60			2.8	ND<0.5	1	ND<0.5	1		ND		ND<0.5	ND	3.3					
EDUCTOR-11		Jan-90	ND<2.0	240			ND<2.0	ND<2.0	ND<2.0	ND<2.0	1	ND	ND	ND	ND<2.0	ND	ND<2.0	ND				
EDUCTOR-11		Apr-90	ND<0.5	12			ND<0.5	ND<0.5	1.2	ND<0.5		ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
EDUCTOR-11		Jul-90	3.0	53			ND<0.5	ND<0.5	ND<0.5	ND<0.5	!	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
EDUCTOR-11		Apr-93	1,200	26,000			1,103	3.5	1.9	2.2	ND<0.5	ND	ND	ND		ND	15	ND				
EDUCTOR-11		Aug-93	730	29,000			470	ND<100	ND<50	ND<50	ND<50	ND	ND	ND	ND<100	ND	ND<50	ND				
EDUCTOR-11		Oct-93	730	100,000			630	ND<100	ND<50	ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<50	ND				
EDUCTOR-11		Feb-94	520	28,000			150	1.0	1.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	10	ND				
EDUCTOR-11		Apr-94	810	63,000			370	49	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
EDUCTOR-11		Oct-94	260	12,000			370	ND<250		ND<250	ND<250	ND	ND	ND	ND<250	ND	ND<250	ND				
EDUCTOR-11		Apr-95	ND<200	13,000			690	ND<400	ND<200	200	200	ND	ND	ND	ND<200	ND	ND<200	ND				
EDUCTOR-11		Oct-95	670	46,000			1,100	ND<500		ND<250	ND<250	ND	ND	ND	ND<250	ND	380	ND				
EDUCTOR-11		Apr-96	440	23,000			1,106	100	ND<5.0	6.7	ND<5.0	ND	ND	ND	ND<5.0	ND	370	ND				
EDUCTOR-11		Oct-96	140	9,800	1,100	ND<50		ND<50	ND<50	ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<50	ND				
EDUCTOR-11		Apr-97	120	6,700	450	ND<31		ND<31	ND<31	ND<31	ND<31	ND	ND	ND	ND<31	ND	ND<31	ND ND				
EDUCTOR-11		Oct-97	ND<500	16,000	ND<500	ND<500		ND<500	1	ND<500	1	ND	ND	ND	ND<500	ND	1	ND<500				
EDUCTOR-11		Apr-98	520	20,000	810	ND<100		ND<100	ND<100		1	ND	ND	ND	ND<400	ND	1	ND<100				
EDUCTOR-11		Oct-98	ND<500	17,000	740	ND<500		ND<500		ND<500	1	ND	ND	ND	ND<500	ND	1	ND<500				
EDUCTOR-11		Apr-99	ND<1,000	11,000	ND<1,000	ND<1,000		1	ND<1,000			ND	ND	ND	ND<1,000	ND		ND<1,000				
EDUCTOR-11		Oct-99	470	13,000	650	ND<250		ND<250	ND<250		I	ND	ND	ND	ND<250	ND	1	ND<250				
EDUCTOR-11		Oct-00	ND<400	8,400	680	ND<400		ND<400		ND<400	ND<400	ND<400	ND	ND	ND<400	ND		ND<400				470
EDUCTOR-11		Mar-01	19	310	14,000	110		1,500	12	2.0	35		ND<2.0	ND<2.0		ND		20		13	ND<1.0	179
EDUCTOR-11		Jun-01	7.9	230	15,000	140		6,100	15	66	3.3		5.6	ND<2.0		ND		72		63	3.8	97
EDUCTOR-11		Aug-01	140	5,100	7,700	44		710	1.2	43	ND<1.0		ND<2.0	ND<2.0		ND ND 14 000		39		36	ND<1.0	100
EDUCTOR-11		Oct-01	1,200	53,000	18,000	ND<1,000		<u> </u>	ND<1,000		1			ND<2,000		ND<1,000		ND<1,000			ND<1,000	,
EDUCTOR-11		Nov-01	150	5,000	5,600	48		750	ND<5.0	8.0	ND<5.0		ND<5.0	ND<5.0		ND		11	ND<5.0	42	ND<5.0	169
EDUCTOR-11		Jan-02	1,400	80,000	17,000	110		1,200	ND<50	ND<50	ND<50		ND<50	ND<50		ND		400		ND<50	ND<50	1,170
EDUCTOR-11		Mar-02	170	3,800	8,000	ND<50		540	ND<50		ND<50		ND<50	ND<50		ND		ND<50		ND<50	ND<50	ND<100
EDUCTOR-11		Jul-02	62	2,600	6,400	30		2,400	ND<1.0	19	ND<1.0		ND<2.0	ND<2.0		ND ND		13		ND<50	ND<50	ND<100
EDUCTOR-11		Oct-02	120	17,000	20,000	38		21,000	ND<1.0	32	ND<1.0		ND<2.0	ND<2.0		ND<1.0		40	2.9	62	4.0	249
EDUCTOR-11	D	Jan-03	21	670	9,400	34		5,700	7.2	27	ND<1.0	ND<1.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	60				
EDUCTOR-11 EDUCTOR-11	Dup	Jan-18	32	1,200	9,600	28		5,600	2.9	24	1.3	ND<1.0	ND<2.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	62			4.0	
	D	Apr-03	ND<1.0	11	570	12 12		4,500	ND<1.0	1.2	ND<1.0		ND<2.0	ND<2.0		ND<1.0		130		35 46	1.9	63 56
EDUCTOR-11 EDUCTOR-11	Dup	Apr-18	ND<1.0	7.6	790	'-		5,500	1.4	1.8	ND<1.0 ND<1.0		ND<2.0 ND<2.0	ND<2.0 ND<2.0		ND<1.0		110		'	1.8	
	Dun	Jul-03	870	15,000	3,800	210		24,000	ND<1.0	120	1		1			ND<1.0		97		460	5.9	1,020
EDUCTOR-11 EDUCTOR-11	Dup	Jul-18	880	32,000 75	4,000	200		27,000	ND<1.0	120 ND<5.0	ND<1.0		ND<2.0	ND<2.0 ND<5.0		ND<1.0		98	ND-F 0	490	7.2 ND<5.0	1,030
EDUCTOR-11	Dus	Oct-03 Oct-18	14 20	75 110	34 53	9.6		560 550	ND<5.0 ND<5.0	ND<5.0			ND<5.0	ND<5.0		ND<5.0 ND<5.0		340 300	ND<5.0 ND<5.0	32	ND<5.0 ND<5.0	113 144
EDUCTOR-11	Dup	Jan-04	ND<10	ND<10	ND<10	12 ND<10		ND<10		ND<5.0			ND<5.0 ND<10	ND<5.0		ND<5.0		ND<10	ND<5.0	ND<10	ND<5.0	ND<20
EDUCTOR-11		Apr-04	-		1	1ND>10		1		ND<10			ND<10	ND<10				ND<10	ND<10	ND<10	ND<10	
EDUCTOR-11		Oct-04	ND<1.0 ND<5.0	ND<1.0 ND<5.0	ND<1.0 ND<5.0	0.2		ND<1.0		ND<1.0			ND<1.0	ND<1.0		ND<1.0 ND<5.0			ND<1.0	<u> </u>	ND<1.0 ND<5.0	ND<1.0
EDUCTOR-11		Jan-05	ND<5.0	ND<5.0	4,700	9.3 180		28 4,400	ND<5.0	9.3	ND<5.0		ND<5.0	ND<5.0		ND<5.0		1,200 1,900	ND<5.0	120 200	ND<5.0	380 650
EDUCTOR-11		Apr-05	-		•	160		33,000	ND<5.0	9.3 57	ND<5.0		ND<5.0	ND<5.0		ND<5.0		2,900	ND<5.0	340	8.7	
EDUCTOR-11	Dus	· · · · · · · · · · · · · · · · · · ·	23	490	19,000								ND<5.0	ND<5.0					ND<5.0	330		1,180
EDUCTOR-11	Dup	Apr-18 Jul-05	23	430	19,000	160 150		35,000	ND<5.0	66	ND<5.0		ND<5.0	ND<5.0		ND<5.0		2,800	ND<5.0	ND<500	9.6	1,180
l	Dus	1	82	2,200	27,000	150		15,000	ND<5.0	130	!		.			ND<5.0		3,600		l	11	1,200
EDUCTOR-11	Dup	Jul-05-	92 ND<250	2,100	27,000	180 ND<250		14,000	ND<5.0	140	ND<5.0	 ND-250	ND<5.0	ND<5.0	ND-250	ND<5.0	420	3,500	ND<5.0	ND<500	11	1,100
EDUCTOR-11		Sep-05	ND<250	ND<250	27,000	ND<250		18,000	ND<250		ND<250	ND<250	ND<250	ND<500	ND<250	ND<250	420	2,900	ND-250	ND-250	 ND<250	 ND-750
EDUCTOR-11		Oct-05	ND<250	ND<250	3,600	ND<250		3,900	ND<250		I			ND<250		ND<250		1,000	ND<250	1	ND<250	ND<750
EDUCTOR-11		Jan-06	150	4,800	2,300	30		12,000	ND<5.0	12	ND<5.0		חיפ>חאו	ND<5.0		ND<5.0	l	3,000	חיכ>חעו	ND<500	9.9	ND<1500

EDUCTOR-11	Anr. 06	I ND < E O	ND<5.0	20,000	ND<500	***************************************	0 500	ND<5.0	37	ND<5.0	<u> </u>	ND-E0	ND<5.0		ND<5.0		1 500	ND<5.0	160	5.7	200
EDUCTOR-11	Apr-06 Oct-06	ND<5.0	ND<5.0	20,000 25,000	ND<500		8,500 9,800	ND<5.0				ND<5.0 ND<100	ND<5.0		ND<5.0		1,500 2,200	ND<5.0	160 290	5.7 ND<100	880
EDUCTOR-11	Apr-07	ND<100	5.1	29,000	200		28,000	ND<100	57	ND<100		ND<100	ND<100		ND<100		14	ND<100	ND<200	9.2	960
EDUCTOR-11	Oct-07	55	3,500	8,300	120		15,000	ND<5.0	30	ND<5.0		ND<5.0	ND<5.0		ND<5.0		4,200	ND<5.0	ND<500	13	1,300
EDUCTOR-11	Oct-08	ND<2000	100,000	23,000	ND<2000		28,000	11		ND<2000	1				ND<4000	3100	5200		ND<2000	ND<2000	
EDUCTOR-11	Oct-09	ND<200	ND<200	34,000	ND<200		9,300	ND<200			1		ND<200		ND<400	1,600	840	ND<200	230	ND<2000	ND<400
EDUCTOR-11	Oct-10	ND<200	2,100	78,000	ND<200		67,000	ND<200		1	1		ND<200	<u> </u>	ND<400	1,900	6900	ND<200	ND<200	ND<200	ND<400
EDUCTOR-11	Nov-10	ND<500	670	29,000	ND<500		2,700	ND<500			l	ND<1,000			ND<1,000	1,300	660				
EDUCTOR-11	Mar-11	ND<500	1,100	94,000	ND<500		5,900	ND<500						ND<500	ND<500		ND<500	ND<500	ND<500	ND<500	ND<500
EDUCTOR-11	May-11	ND<500	3,600	100,000	ND<500		11,000	ND<500			ł	ND<500	ND<500	ND<500	ND<500	1,500	ND<500	ND<500	ND<500	ND<500	ND<500
EDUCTOR-11	Oct-11	ND<50	54	8,000	ND<50		1,100	ND<50	ND<50	ND<50	ND<50	ND<100	ND<50	ND<50	ND<100	ND<50	ND<50	ND<50	ND<50	ND<50	ND<100
EDUCTOR-11	Apr-12	ND<50	620	93,000	74		6,400	ND<50	110	ND<50		ND<100	ND<50	ND<50	ND<100	880	190	ND<50	120	ND<50	430
EDUCTOR-11	Oct-12	ND<1,000	1,200	83,000	ND<1,000		5,200	ND<1,000		l	!	l		l			l			ND<1,000	
EDUCTOR-11	May-13	ND<1000	1,000	37,000	ND<1,000		2,900	ND<1000							ND<2000						
EDUCTOR-11	Oct-13	ND<500	ND<500	29,000	ND<500		1,800	ND<500	ND<500	ND<500					ND<1000						
EDUCTOR-11	Apr-14	ND<500	ND<500	20,000	ND<500		1,600	1		ND<500	ND<500							ND<500	ND<500	ND<500	ND<1000
EDUCTOR-11	Sep-14	ND<500	ND<500	43,000	ND<500		2,900			ND<500							ND<500				
	<u>'</u>	_	States Enviror	i		cy approval,	i '			1	ı										
DUCTOR-15 (ZA)	Oct-13	ND<1,000	8,800	160,000	ND<1,000			ND<1,000				ND<2,000	ND<1,000	ND<1,000	ND<2,000	1,800	ND<1,000				
EDUCTOR-15	Apr-14	ND<1,000	ND<1,000	50,000	ND<1,000		2,400	ND<1,000									ND<1,000	ND<1,000	ND<1,000	ND<1,000	ND<2000
EDUCTOR-15	Sep-14	ND<1,000	ND<1,000	120,000	ND<1,000		5,700	ND<1,000								1,400	1,600				
T-1B (ZB1)	Aug-83	ND<1.0	ND<1.0			ND<1	ND<1.0			ND<1.0		ND		ND<1.0	ND	ND<1.0					
T-1B	Mar-84		ND<.5									ND			ND	ND					
T-1B	Aug-84	ND	ND			ND	ND	ND	ND	ND		ND		ND	ND	ND					
T-1B	Nov-84	ND<0.5	ND<0.5					ND<0.5				ND			ND						
T-1B	Oct-85	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Jan-86	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND			ND	ND<0.5					
T-1B	Apr-86	ND<0.5	1			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Jul-86	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Sep-86	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Jan-87	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Apr-87	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Jun-87	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Oct-87	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Jan-88	ND<0.5	ND<0.5			0.7	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	May-88	ND<0.5	ND<0.5			1.3	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Aug-88	ND<0.5	ND<0.5			1.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Nov-88	ND<0.5	ND<0.5			1.4	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Feb-89	ND<0.5	ND<0.5			0.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	May-89	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Aug-89	ND<0.5	ND<0.5			0.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Oct-89	ND<0.5	5			1.4	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5					
T-1B	Jan-90	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-1B	Apr-90	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-1B	Jul-90	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5			ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-1B	Oct-90	ND<0.5	ND<0.5			ND<0.5	ND<0.5				ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-1B	Jan-91	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5			ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-1B	Apr-91	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5			ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-1B	Jul-91	ND<0.5	ND<0.5			ND<0.5	ND<0.5	1 1			ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-1B	Oct-91	ND<0.5	ND<0.5			ND<0.5	ND<0.5				ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-1B	Jan-92	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				

																	~		 	
T-1B		Apr-92	ND<0.5	ND<0.5			ND<0.5	ND<0.5		ND<0.5		ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-1B		Oct-92	ND<0.5	ND<0.5			ND<0.5	ND<1.0	ND<0.5 I			ND	ND	ND		ND	ND<0.5	ND	 	
T-1B		Oct-93	ND<0.5	ND<0.5			0.7	ND<1.0			ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-1B		Oct-94	ND<0.5	ND<0.5			ND<0.5	ND<0.5			ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-1B		Oct-95	ND<1.0	ND<1.0			ND<1.0	ND<2.0	ND<1.0			ND	ND	ND	ND<1.0	ND	ND<1.0	ND	 	
T-1B		Oct-96	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND<0.5	ND<0.5			ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-1B		Oct-97	ND<0.5	ND<0.5	1.3	ND<0.5		ND<0.5	<u> </u>	ND<0.5		ND	ND	ND	ND<0.5	ND	ND<1.0	ND	 	
T-1B		Oct-98	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0		ND<1.0		ND	ND	ND	ND<1.0	ND	ND<1.0	ND	 	
T-1B		Oct-99	ND<1.0	ND<1.0	1.4	ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND	 	
T-1B		Oct-00	ND<1.0	ND<1.0	1.5	ND<1.0		ND<1.0	1	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND<1.0	ND	ND<1.0	ND<1.0	 	
T-1B		Oct-01	ND<0.5	ND<0.5	1.4	ND<0.5		ND<0.5		ND<0.5		ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<2.0	ND<0.5	ND<0.5	 	
T-1B		Oct-02	ND<0.5	ND<0.5	1.8	0.79		ND<0.5		ND<0.5		ND<0.5	ND<1.0	ND<1.0	ND<0.5	ND<2.0	ND<0.5	ND<0.5	 	
T-1B	Dup	Oct-18	ND<0.5	ND<0.5	1.7	0.76		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0	ND<0.5	ND<2.0	ND<0.5	ND<0.5	 	
			Per Water B	Board approva	ıl, well 1B wa	as abandone	d in Februar	y 2004.												
T-2B (ZB1)		Aug-83	2,800	1,100,000			160	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND		ND<5.0	ND	ND<5.0		 	
T-2B		Sep-83	2,000	73,000			2,000		ND	ND	ND		ND		ND	ND			 	
T-2B		Sep-83	2,000	290,000			2,000		ND	ND	ND		ND		ND	ND			 	
T-2B		Mar-84		130,000									ND			ND			 	
T-2B		Aug-84	1,500	11,000			650	ND	ND	ND	ND		ND		ND	ND	ND		 	
T-2B		Nov-84	2,300	52,000			7,200		ND<130				ND			ND			 	
T-2B		Oct-85	2,700	7,500			7,700	ND<50	ND<50	ND<50	ND<50		ND		840	ND	ND<50		 	
T-2B		Mar-86	1,300	5,500			3,300	750	ND<25	ND<25	ND<25		ND			ND	ND<25		 	
T-2B		Apr-86	580	4,000			3,600	180	ND<50	ND<50	ND<50		ND		ND<50	ND	ND<50		 	
T-2B		Jul-86	1,200	3,800			2,800	1,400	ND<10	ND<10	ND<10		ND		ND<10	ND	860		 	
T-2B		Jan-87	800	9,100			7,000	1,100	ND<25	ND<25	ND<25		ND		ND<25	ND	710		 	
T-2B		Jul-87	490	2,100			5,400	730	ND<50	ND<50	ND<50		ND		100	ND	ND<50		 	
T-2B		Oct-87	330	2,000			3,300	860	59	ND<25	ND<25		ND		ND<25	ND	71		 	
T-2B		Jan-88	170	1,400			12,000	4,200	ND<50	ND<50	ND<50		ND		ND<50	ND	ND<50		 	
T-2B		May-88	54	630			5,800	1,000	12	120	ND<5.		ND		ND<5.0	ND	ND<5.0		 	
T-2B		Aug-88	180	970			7,300	3,800	ND<100 N	ND<100	ND<100		ND		ND<100	ND	ND<100		 	
T-2B		Nov-88	230	970			8,700	3,300	ND<100 N	ND<100	ND<100		ND		ND<100	ND	ND<100		 	
T-2B		Feb-89	ND<500	7,200			36,000	13,000	ND<500 N	ND<500	ND<500		ND		ND<500	ND	ND<500		 	
T-2B		May-89	ND<200	1,400			34,000	32,000	ND<200 N	ND<200	ND<200		ND		ND<200	ND	ND<200		 	
T-2B		Aug-89	ND<2,500	ND<2500			48,000	26,000	ND<2,500N				ND			ND			 	
T-2B		Aug-89	ND<500	4,000			40,000	45,000	ND<500 N				ND		ND<500	ND	ND<500		 	
T-2B		Oct-89	ND<200	7,500			34,000	44,000	ND<200 N				ND		ND<200		ND<200		 	
T-2B		Jan-90	ND<1,000	17,000			110,000		ND<1,000N			ND	ND	ND	ND<1,000		ND<1,000		 	
T-2B		Jan-90	ND<500	1,600			40,000	24,000	ND<500 N			ND	ND	ND	ND<500	ND	ND<500		 	
T-2B		Apr-90	130	13,000			41,000	13,000	ND<100 N			ND	ND	ND	ND<100	ND	ND<100		 	
T-2B		Apr-90	90	4,200			11,000	14,000	ND<50	80	ND<50	ND	ND	ND	ND<50	ND	ND<50	ND	 	
T-2B		Jul-90	ND<200	6,000			21,000	12,000	ND<200 N			ND	ND	ND	ND<200		ND<200		 	
T-2B		Jul-90	ND<100	3,400			15,000	3,900	ND<100 N			ND	ND	ND	ND<100		ND<100		 	
T-2B		Oct-90	ND<500	26,000			53,000	14,000	ND<500 N			ND	ND	ND	ND<500		ND<500		 	
T-2B		Oct-90	ND<200	19,000			52,000	7,800	ND<200 N			ND	ND	ND	ND<200	ND	ND<200		 	
T-2B		Jan-91	ND<200	2,000			49,000	6,500	ND<200 N			ND	ND	ND	ND<200	ND	ND<200		 	
T-2B		Jan-91	ND<500	5,200			22,000	7,000	ND<500 N			ND	ND	ND	ND<500	ND	ND<500		 	
T-2B		Apr-91	ND<500	4,200			ND<50	ND<50		ND<50	ND<50	ND	ND	ND	240	ND	ND<50	ND	 	
T-2B		Apr-91	4.3	2,300			32	1.0		ND<0.5		ND	ND	ND	180	ND	ND<0.5	ND	 	
T-2B		Jul-91	1,000	17,000			55,120	3,500	ND<50	150	ND<50	ND	ND	ND	ND<50	ND ND	ND<5.3	ND	 	
T-2B		Jul-91	240	6,100			7,200	ND<100	ND<50		ND<50	ND	ND	ND	ND<30	ND ND	ND<50	ND	 	
T-2B		Oct-91	700	15,000			38,000	3,300	ND<50			ND	ND	ND	ND<100		ND<100			
1-20		00:31	100	13,000			30,000	1 3,300	1 100 100 11	4D > 100	100 – רואו	טאו	ר ואר	טאו	ואט - רואו	טאו	טטו -מאון	ואט	 	

T-2B		Oct-91	500	10,000			14,000	1,600	ND<100	<u> </u>		ND	ND	ND	ND<100	ND	ND<100	ND				
T-2B		Apr-92	1,600	15,000			16,000	ND<100	ND<100	ND<100	ND<100	ND	ND	ND	ND<100	ND	ND<100	ND				
T-2B		Apr-92	1,100	9,300			9,800	2,400	ND<50	53	ND<50	ND	ND	ND	ND<50	ND	110	ND				
T-2B		Aug-92	1,200	5,100			7,336	1,100	6.5	42	1.7	ND	ND	ND	ND<1.0	ND	21	ND				
T-2B		Oct-92	1,900	7,400			7,533	1,400	4.8	40	6.8	ND	ND	ND		ND	ND<500	ND				
T-2B		Apr-93	530	3,700			6,600	2,300	ND<50	ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<50	ND				
T-2B		Oct-93	300	2,600			7,322	640	ND<5.0	23	ND<5.0	ND	ND	ND	ND<5.0	ND	42	ND				
T-2B		Apr-94	330	1,500			3,134	ND<5	7	32	ND<5.0	ND	ND	ND	1.1	ND	35	ND				
T-2B		Oct-94	ND<25	590			150	ND<25	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<25	ND				
T-2B		Aug-95	ND<40	770			2,500	540	ND<40	ND<40	ND<40	ND	ND	ND	ND<40	ND	ND<40	ND				
T-2B		Oct-95	180	840			1,400	130	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<25	ND				
T-2B		Apr-96	300	1,500			1,313	230	ND<2.5	13	ND<2.5	ND	ND	ND	ND<2.5	ND	4.9	ND				
T-2B		Oct-96	200	880	3,000	21		190	ND<10	19	ND<10	ND	ND	ND	ND<10	ND	15	ND				
T-2B		Apr-97	170	690	1,400	14		230	ND<13	ND<13	ND<13	ND	ND	ND	ND<13	ND	24	ND				
T-2B	Dup	Oct-97	220	810	2,800	ND<50		170	ND<50	ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<100					
T-2B		Oct-97	220	820	3,000	ND<50		200	ND<50	ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<100	ND<50				
T-2B		Apr-98	100	670	1,700	ND<20		300	ND<20	ND<20	ND<20	ND	ND	ND	ND<80	ND	ND<20	ND<20				
T-2B		Oct-98	81	720	1,000	ND<25		110	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<25	ND<25				
T-2B		Oct-99	55	430	800	ND<10		35	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND<10				
T-2B		Oct-00	110	520	2,200	ND<50	***	340	ND<50	ND<50	ND<50		ND	ND		ND		1.4		ND<1.0	ND<1.0	ND<2.0
T-2B		Nov-00	ND<1.0	11	2,300	15		300	ND<1.0	9.5	1.2		ND<2.0	ND<2.0		ND		2.0		ND<1.0	ND<1.0	ND<2.0
T-2B		Dec-00	ND<1.0	2.9	53	9.3		1,000	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		1.6		ND<1.0	ND<1.0	ND<2.0
T-2B		Feb-01	23	31	880	12		1,300	ND<1.0	3.5	ND<1.0		ND<2.0	ND<2.0		ND		1.6		ND<1.0	ND<1.0	8.5
T-2B		Apr-01	1.6	14	440	8.7		980	ND<1.0	1.2	ND<1.0		ND<2.0	ND<2.0		ND		2.6		ND<1.0	ND<1.0	ND<2.0
T-2B		Jun-01	ND<1.0	5.8	1,500	16		1,400	2.6	5.5	1.7		3.1	ND<2.0		ND		1.7		ND<1.0	ND<1.0	ND<2.0
T-2B		Aug-01	2.5	77	680	12		800	ND<1.0	2.5	ND<1.0		ND<2.0	ND<2.0		ND		20		ND<1.0	ND<1.0	ND<2.0
T-2B	Dup	Oct-18	ND<50	580	140	ND<50		700	ND<50	ND<50	ND<50		ND<100	ND<100		90		ND<50		120	ND<50	ND<100
T-2B		Oct-01	ND<50	940	250	180		540	ND<50	ND<50	ND<50		ND<100	ND<100		ND<50		ND<50		90	ND<50	ND<100
T-2B		Jan-02	ND<10	18	67	ND<10		210	ND<10	ND<10	ND<10		ND<20	ND<20		ND		78		ND<10	11	ND<20
T-2B		Apr-02	2.7	24	210	6.2		190	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		5.9		ND<1.0	ND<1.0	ND<2.0
T-2B		Jul-02	ND<1.0	ND<1.0	90	ND<1.0		150	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		67		ND<1.0	ND<1.0	ND<2.0
T-2B		Oct-02	ND<1.0	54	46	ND<1.0		170	ND<1.0	2.5	ND<1.0		ND<2.0	ND<2.0		ND<1.0		66	2.0	ND<1.0	1.8	ND<2.0
T-2B		Jan-03	ND<1.0	33	30	ND<1.0		14	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		66				
T-2B		Apr-03	ND<1.0	28	7.6	ND<1.0		41	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		60		7.8	ND<1.0	2.1
T-2B		Jul-03	ND<1.0	2.6	2.8	ND<1.0		5.0	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		71		90	ND<1.0	4.1
T-2B		Oct-03	ND<5.0	ND<5.0	5.2	ND<5.0		9.1	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		88	ND<5.0	ND<5.0	ND<5.0	ND<10
T-2B		Jan-04	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
T-2B		Apr-04	ND<1.0	ND<1.0	3.3	ND<1.0		5.4	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
T-2B		Oct-04	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		63	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2B		Jan-05	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		72	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2B		Apr-05	ND<5.0	ND<5.0	43	ND<5.0		360	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		130	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2B		Jul-05	ND<5.0	5.1	ND<5.0	ND<5.0		16	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		94	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2B		Oct-05	ND<5.0	ND<5.0	6.2	ND<5.0		48	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		73	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2B		Jan-06	ND<5.0	ND<5.0	ND<5.0	7.0		22	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		67	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2B		Apr-06	ND<5.0	ND<5.0	5.9	11		24	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		49	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2B		Oct-06	ND<5.0	ND<5.0	ND<5.0	8.2		47	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		49	ND<5.0	ND<5.0	ND<5.0	ND<15
T-2B		Apr-07	ND<5.0	ND<5.0	ND<5.0	ND<5.0		92		<u> </u>	ND<5.0			ND<5.0		ND<5.0		31	ND<5.0	ND<5.0	ND<5.0	1
T-2B		Oct-07	ND<5.0	ND<5.0	11	7.8		270			ND<5.0		ND<5.0			ND<5.0		23	ND<5.0	ND<5.0	ND<5.0	+
T-2B		Oct-08	ND<2	ND<2	88	6		210	ND<2	ND<2	ND<2	ND<2	ND<4	ND<2	ND<2	ND<4	5.2	4.1	ND<2	ND<2	ND<2	ND<4
T-2B		Oct-09	ND<20	ND<20	6,600	29		3,600			ND<20	ND<20	ND<40	ND<20	ND<20	ND<40	39	230	ND<20	ND<20	ND<20	ND<40
T-2B		Oct-10	ND<2.5	ND<2.5	200	ND<2.5		260			ND<2.5		ND<5.0			ND<5.0	6.4	17		ND<2.5	ND<2.5	1

T-2B		Nov-10	ND<2.5	2.5	160	ND<2.5		290	ND<2.5	ND<2.5	ND<2.5	ND-25	ND<5.0	ND<2.5	ND<2.5	ND<5.0	23	39				
T-2B		Mar-11	ND<2.5	0.52	9,4	ND<2.5		46	ND<2.5	140~2.5	0.7		ND<0.50				8.6	57	ND<0.50	ND<0.50	ND<0.50	3.2
T-2B		May-11	ND<0.50	0.52	40	ND<0.50		82	ND<0.50	סיס און	0.69		ND<0.50				7.5				ND<0.50	
T-2B		Oct-11	ND<0.50	0.72	79	2.1		140	ND<0.50				ND<1.0				7.1	19	L	ND<0.50		1.5
T-2B		Apr-12	ND<0.50	ND<0.50	38	1.0		34	ND<0.50		1	ND<0.50		ND<0.50			6.5	25		ND<0.50		
T-2B		Oct-12	ND<0.50	0.65	83	2.5		100	ND<0.50			ND<0.50		ND<0.50		ND<1.0	5.7	14		ND<0.50	ND<0.50	
T-2B		May-13	ND<0.50	0.76	80	6.3		77	ND<0.50		1			ND<0.50		ND<1.0	6.7	11		ND<0.50	ND<0.50	
T-2B		Oct-13	ND<0.50	ND<2.5	140	1.6		150	ND<0.50					ND<0.50		ND<1.0	10	12				
T-2B		Apr-14	ND<2.5	ND<2.5	12	ND<2.5		40	ND<2.5			ND<2.5	ND<5.0		ND<2.5	ND<5.0	16	58	ND<2.5	ND<2.5	ND<2.5	ND<5.0
T-2B		Sep-14	ND<2.5	ND<2.5	26	ND<2.5		60			ND<2.5	ND<2.5	ND<5.0		ND<2.5	ND<5.0	9.3	28				140 40.0
1 20		ОСР 14		States Enviror	i .				1		1		140.0.0	140 -2.0	110 12.0	110 10.0	0.0	20				
T-4B (ZB1)	•	Aug-83	ND<1.0	ND<1.0			10	ND ND	ND<1.0	3.6	ND<1.0	T	ND		ND<1.0		ND					
T-4B		Mar-84		4									ND									
T-4B		Aug-84	ND	ND			ND	ND	ND	ND	ND		ND		ND		ND					
T-4B		Nov-84	ND<0.5	1.5			ND<0.5		ND<0.5				ND									
T-4B		Oct-85	ND<0.5	ND<0.5			ND<0.5	ND<0.5		ND<0.5	ND<0.5		ND		ND<0.5		ND<0.5					
T-4B		Jan-86	ND<0.5	ND<0.5			ND<0.5	ND<0.5			ND<0.5		ND		ND<0.5		ND<0.5					
T-4B		Apr-86	ND<0.5	1			ND<0.5	ND<0.5			ND<0.5		ND		ND<0.5		ND<0.5					
T-4B		Jan-88	ND<0.5	14			0.6	ND<0.5		ND<0.5	1		ND		0.6		ND<0.5					
T-4B		May-88	ND<0.5	9			0.7	ND<0.5		ND<0.5			ND		0.5		ND<0.5					
T-4B		Aug-89	ND<0.5	57			3	ND<0.5		ND<0.5	 		ND		1.8		ND<0.5					
T-4B		Oct-90	ND<0.5	75			14	ND<0.5		ND<0.5	1	ND	ND	ND	1.8	ND	ND<0.5	ND				
T-4B		Oct-91	ND<0.5	75			13	ND<0.5		ND<0.5		ND	ND	ND	3.6	ND	ND<0.5	ND				
T-4B		Oct-92	ND<0.5	61			4.3	ND<1.0	ND<0.5	ND<0.5		ND	ND	ND		ND	ND<0.5	ND				
T-4B		Oct-93	ND<0.5	100			8.5	ND<1.0		ND<0.5	1	ND	ND	ND	2.6	ND	ND<0.5	ND				
T-4B		Oct-94	ND<5.0	53			23	ND<5.0		ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-4B		Oct-95	ND<1.0	30			22	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	2.4	ND	ND<1.0	ND				
T-4B		Oct-96	ND<0.5	28	17	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	1.7	ND	ND<0.5	ND				
T-4B		Oct-97	ND<1.0	30	38	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	2.0	ND	ND<2.0	ND				
T-4B		Oct-98	ND<1.0	43	40	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	1.8	ND	ND<1.0	ND				
T-4B		Oct-99	ND<1.0	32	32	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	1.6	ND	ND<1.0	ND				
T-4B		Oct-00	ND<2.0	10	100	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND	ND	ND<2.0	ND	ND<2.0	ND<2.0				
T-4B	Dup	Oct-00	ND<2.0	9.0	100	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND	ND	ND<2.0	ND	ND<2.0	ND<2.0				
T-4B		Oct-01	ND<5.0	ND<5.0	66	12		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<20	ND<20	ND<5.0	ND<5.0				
T-4B		Oct-02	ND<5.0	5.8	220	ND<5.0		5.7	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<10	ND<5.0	ND<20	ND<5.0	ND<5.0				
T-4B		Apr-03	ND<1.0	11	350	ND<1.0		ND<2.0	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-4B		Jul-03	ND<1.0	13	ND<20	3.1		ND<2.0	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-4B		Oct-03	ND<5.0	9.8	340	ND<5.0		7.4	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-4B		Jan-04	ND<12	6.4	350	ND<12		ND<12	ND<12	ND<12	ND<12		ND<12	ND<12		ND<12		ND<12	ND<12	ND<12	ND<12	ND<24
T-4B		Apr-04	ND<1.0	13	540	6.3		ND<1.0	ND<1.0				ND<2.0	6.3		ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-4B		Jul-04	ND<5.0	8.5	460	5.8		ND<5.0			1			ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<10
T-4B		Oct-04	ND<5.0	6.6	350	ND<5.0		ND<5.0	ND<5.0				ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-4B		Jan-05	ND<5.0	9.0	810	20		ND<5.0	ND<5.0		 		ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-4B		Apr-05	ND<5.0	110	69	ND<5.0		12			ND<5.0		ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-4B		Jul-05	ND<5.0	10	620	ND<5.0		ND<5.0			ND<5.0		ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-4B		Oct-05	ND<5.0	9.2	550	ND<5.0		ND<5.0	ND<5.0				ND<5.0	ND<5.0		ND<5.0				ND<5.0	ND<5.0	ND<15
T-4B		Jan-06	ND<5.0	8.4	600	ND<5.0		ND<5.0			ND<5.0		ND<5.0	ND<5.0		ND<5.0				ND<5.0	ND<5.0	ND<15
T-4B		Apr-06	ND<5.0	7.9	480	12		ND<5.0			ND<5.0		ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-4B		Oct-06	ND<5.0	ND<5.0	580	ND<5.0		ND<5.0			ND<5.0			ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-4B		May-07	ND<5.0	7.3	230	ND<5.0		ND<5.0	ND<5.0		1			ND<5.0		ND<5.0				ND<5.0	ND<5.0	
T-4B		Jul-07	ND<5.0	5.7	430	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15

		T 112 = 0			T = .		T	I = 0 I		I	<u> </u>	T = 0	T = 0			<u> </u>					
T-4B	Oct-07	ND<5.0	7.9	550	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-4B	Oct-08	ND<5	5.3	500	ND<5		ND<5	ND<5	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	ND<5	ND<5	ND<10
T-4B	Oct-09	ND<0.50	2.5	370	2.2		ND<0.50	ND<0.50	1.1	ND<0.50	!		ND<0.50		ND<1.0	!		1.4	ND<0.50	ND<0.50	
T-4B	Oct-10	ND<0.50	3.7	360	10		ND<0.50	ND<0.50		ND<0.50						!	ND<0.50		ND<0.50	ND<0.50	ND<1.0
T-4B	Oct-11	ND<5.0	5.6	570	5.1		ND<5.0	ND<5.0			ND<5.0	ND<10	ND<5.0	ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-4B	Oct-12	ND<5.0	8.4	600	17		ND<5.0	ND<5.0			ND<5.0	ND<10		ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<10
T-4B	Oct-13	ND<5.0	9.2	830	1.4 J		ND<5.0	1	ND<5.0			ND<10	ND<5.0	ND<5.0	ND<10		ND<5.0				
T-4B	Oct-14	ND<5.0	5.2	500	ND<5.0		ND<5.0		ND<5.0		ND<5.0	ND<10	ND<5.0	ND<5.0		ND<5.0					
T-4B	Jun-15	ND<0.50	5	130	ND<0.50		ND<0.50	ND<0.50				l	ND<0.50				ND<0.50				
T-4B	Oct-15	ND<0.50	4	120	0.97		ND<0.50						ND<0.50		ND<1.0						
T-4B	May-16	ND<0.50	3.6	480	3.0		ND<0.50	ND<0.50		ND<0.50		1	ND<0.50		ND<1.0						
T-4B	Oct-16	ND<1.0	4	94	ND<1.0		ND<1.0	ND<1.0		ND<1.0		ND<2.0		ND<1.0		ND<1.0	l				
T-4B	Oct-17	ND<0.50	5.2	650	2.7		0.62	ND<0.50		ND<0.50	 ND 440			ND<0.50			ND<0.50				
T-4B	Oct-18	ND<10	ND<10	700	ND<10		ND<10	ND<10	ND<10	ND<10	ND<10	ND<20	ND<10	ND<10	ND<20	ND<10	ND<10				
T-5B (ZB1)	Aug-83	ND<1.0	3,200			14	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND		ND<1.0	ND	ND<1.0					
T-5B	Mar-84		16,000									ND			ND						
T-5B	Aug-84	ND 40	17,000			ND ND 100	ND	ND 47	ND	ND		ND		10,000	ND	ND					
T-5B	Nov-84	19	15,000			ND<20		17				ND			ND						
T-5B	Oct-85	73	19,000			ND<50	ND<50	ND<50	ND<50	ND<50		ND		6,300	ND	ND<50					
T-5B	Jan-86	ND<25	9,100			ND<25	ND<25	ND<25	ND<25	ND<25		ND			ND	ND<25					
T-5B	Apr-86	ND<25	8,200			ND<25	ND<25	ND<25	ND<25	ND<25		ND		6,900	ND	ND<25					
T-5B	Jul-86	ND<50	6,700			ND<50	ND<50	ND<50	ND<50	ND<50		ND		3,300	ND	ND<50					
T-5B	Sep-86	ND<100	20,500			ND<100	ND<100	ND<100		ND<100		ND		3,150	ND	ND<100					
T-5B	Jan-87	33	4,900			ND<10	ND<10	ND<10	ND<10	ND<10		ND		3,100	ND	ND<10					
T-5B	Apr-87	ND<25	15,000			ND<25	ND<25	ND<25	480	ND<25		ND		1,700	ND	ND<25					
T-5B	Jun-87	140	5,500			25	ND<25	ND<25	ND<25	ND<25		ND		1,800	ND	ND<25					
T-5B	Oct-87	ND<50	7,800			ND<50	ND<50	120	ND<50	ND<50		ND		1,800	ND	ND<50					
T-5B	Jan-88	ND<250	17,000			ND<250	ND<250		ND<250	ND<250		ND		2,800	ND	ND<250					
T-5B	Jun-88	ND<250	11,000			ND<250	ND<250	ND<250		ND<250		ND		1,200	ND	ND<250					
T-5B	Jun-88	18	7,400			13	ND<0.5	7.8	2.5	1.4		ND		2,500	ND	ND<0.5					
T-5B	Aug-88	ND<100	14,000			ND<100	ND<100	ND<100		ND<100		ND		2,700	ND	ND<100					
T-5B	Nov-88	ND<5.0	5,500	-		18	ND<5.0	1	ND<5.0	ND<5.0		ND		ND<5.0	ND	ND<5.0					
T-5B	Nov-88	ND<50	8,000			ND<50	ND<50	ND<50	ND<50	ND<50		ND		2,000	ND	ND<50					
T-5B	Feb-89	ND<250	8,000			ND<250	ND<250	ND<250		ND<250		ND		2,000	ND	ND<250					
T-5B	Aug-89	ND<50	10,000			ND<50	ND<50		ND<50	ND<50		ND		2,100	ND	ND<50					
T-5B T-5B	Aug-89	ND<50	9,200 6,700			ND<50	ND<50	ND<50				ND		2,300	ND	ND<50					
T-5B	Oct-89	33				39 ND<20	ND<2.0	2	ND<2.0		NID.	ND	NID	2,700	ND	ND<2.0	ND				
T-5B	Jan-90	ND<20	5,500			ND<20	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	1,300	ND	ND<20	ND				
T-5B	Apr-90 Jul-90	ND<20 ND<20	3,000 4,100			ND<20 ND<20	ND<20 ND<20		ND<20 ND<20	ND<20 ND<20	ND ND	ND ND	ND	250 910	ND ND	ND<20 ND<20	ND ND				
T-5B	Oct-90	ND<50	6,300			ND<20	ND<20		ND<50	ND<20	ND	ND	ND	270		ND<50	ND				
T-5B	Jan-91	ND<50	2,500			ND<50	ND<50	1	ND<20	ND<50	ND	ND	ND ND	280	ND ND	ND<20	ND				
T-5B	Apr-91	ND<20	5,700					 		ND<20	ND			1,600			ND				
T-5B	Jul-91	ND<20	9,300			30 60	ND<20 ND<50		ND<20 ND<50		ND	ND ND	ND	2,200	ND ND	ND<20 ND<50	ND				
T-5B	Oct-91	ND<50				ND<100		ND<50		ND<50 ND<100	ND		ND			!	l				
T-5B	Jan-92	ND<100	12,000 16,000			ND<100	ND<100	, , , , , , , , , , , , , , , , , , ,			ND	ND ND	ND	1,900	ND	ND<100 ND<100					
T-5B						ND<100	ND<100	ND<100			ND	l	ND	2,800	ND	1					
T-5B	Apr-92	ND<100	11,000 3,600			l	ND<100	ND<100				ND	ND	2,400	ND	ND<100					
T-5B	Oct-92 Oct-92	ND<1000	4,000			33 ND<150	ND<1.0	2.2 ND<150	ND<0.5		ND ND	ND ND	ND	 640	ND	ND<0.5	ND ND				
T-5B	Oct-93	ND<150 ND<5.0	500	-		ND<150 ND<5.0	ND<150 ND<10	ND<150			ND		ND	54	ND	ND<150					
												ND	ND		ND	ND<5.0	ND				
T-5B	Oct-94	ND<25	420			ND<25	ND<25	ND<25	משייטוו	באיטאון	ND	ND	ND	41	ND	ND<25	ND				

l			T																			
T-5B		Oct-95	ND<1.0	110			1.6	ND<2.0	l	ND<1.0	ND<1.0	ND	ND	ND	4.9	ND	ND<1.0	ND				
T-5B		Oct-96	ND<1.3	390	8.2	ND<1.3		ND<1.3		ND<1.3		ND	ND	ND	34	ND	ND<1.3	ND				
T-5B		Oct-97	ND<10	360	ND<10	ND<10		ND<10	1	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<20	ND				
T-5B		Oct-98	ND<10	300	ND<10	ND<10		ND<10	l	ND<10	ND<10	ND	ND	ND	15	ND	ND<10	ND				
T-5B		Oct-99	ND<10	500	16	ND<10		ND<10		ND<10	ND<10	ND	ND	ND	63	ND	ND<10	ND				
T-5B		Oct-00	ND<200	2,400	ND<200	ND<200		ND<200		ND<200	ND<200	ND<200	ND	ND	260	ND	ND<200					
T-5B		Oct-01	ND<50	1,700	88	ND<50		ND<50		ND<50	ND<50	ND<50	ND<50	ND<100	ND<200	ND<200	ND<50	ND<50				
T-5B	Dup	Oct-18	ND<50	1,900	91	ND<50		ND<50		ND<50	ND<50	ND<50	ND<50	ND<100	ND<200	ND<200	ND<50	ND<50				
T-5B		Oct-02	30	2,200	55	ND<20		ND<20	l	ND<20	ND<20	ND<20	ND<40	ND<40	450	ND<80	ND<20	ND<20				
T-5B	Dup	Oct-18	ND<20	2,100	52	ND<20		ND<20	ND<20	ND<20	ND<20	ND<20	ND<40	ND<40	410	ND<80	ND<20	ND<20				
T-5B		Oct-03	ND<10	720	18	ND<10		ND<10	ND<10	ND<10	ND<10	ND<10	ND<20	ND<20	31	ND<40	ND<10	ND<10				
T-5B	Dup	Oct-18	ND<10	1,200	29	ND<10		ND<10	1	ND<10	ND<10	ND<10	ND<20	ND<20	60	ND<40	ND<10	ND<10				
T-5B		Oct-04	ND<5.0	720	21	ND<5.0		ND<5.0	1	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<10	49	ND<20	ND<5.0	ND<5.0				
T-5B	Dup	Oct-18	ND<5.0	760	21	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<10	ND<10	63	ND<20	ND<5.0	ND<5.0				
T-5B		Oct-05	ND<5.0	420	12	ND<5.0		ND<5.0	1	ND<5.0		ND<5.0	ND<5.0	ND<10	44		ND<5.0	ND<5.0				
T-5B	Dup	Oct-18	ND<5.0	410	12	ND<5.0		ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<10	40		ND<5.0	ND<5.0				
T-5B		Oct-06	ND<2.0	270	5.9	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	18		ND<2.0	ND<2.0				
T-5B	Dup	Oct-18	ND<2.0	270	6.1	ND<2.0		ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	20		ND<2.0	ND<2.0				
T-5B		Oct-07	6.2	2,300	46	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	470		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0
T-5B	Dup	Oct-18	5.9	2,200	45	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	380	ND<4.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0
T-5B		Oct-08	ND<20	2,300	39	ND<20		ND<20	ND<20	ND<20	ND<20	ND<20	ND<40	ND<20	550	ND<40	ND<20	ND<20	ND<20	ND<20	ND<20	ND<40
T-5B	Dup	Oct-18	ND<20	2,200	39	ND<20		ND<20	ND<20	ND<20	ND<20	ND<20	ND<40	ND<20	540	ND<40	ND<20	ND<20	ND<20	ND<20	ND<20	ND<40
T-5B		Oct-09	1.5	380	14	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	50	ND<1.0	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-5B	Dup	Oct-18	1.3	390	12	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	45	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-5B		Oct-10	3.3	1,200	51	1.2		ND<0.50	ND<0.50	1.2	0.57	ND<0.50	ND<1.0	ND<0.50	89	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-5B	Dup	Oct-18	3.5	1,200	49	1.2		ND<0.50	ND<0.50	1.2	0.59	ND<0.50	ND<1.0	ND<0.50	96	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-5B		Oct-11	ND<10	1,700	58	ND<10		ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	200	200	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<20
T-5B	Dup	Oct-18	ND<25	1,700	58	ND<25		ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	200	200	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	ND<50
T-5B		Oct-12	ND<10	1,600	70/71			ND<10	ND<10	ND<10	ND<10	ND<10	ND<20	ND<10	170/180	ND<20	ND<10	ND<10	ND<10	ND<10	ND<10	ND<20
T-5B		Oct-13	4.5 J	1,500	51	ND<10		ND<10	ND<10	ND<10	ND<10		ND<20	ND<10	150	ND<20	ND<10	ND<10				
T-5B	Dup	Oct-18	4.8 J	1,400	73	1.8 J		ND<5.0	ND<5.0	2.3 J	ND<5.0		ND<10	ND<5.0	190	ND<10	ND<5.0	ND<5.0				
T-5B		Oct-14	ND<10	1,500	58	ND<10		ND<10	ND<10	ND<10	ND<10	ND<10	ND<20	ND<10	140	ND<20	ND<10	ND<10				
T-5B	Dup	Oct-18	ND<25	1,600	64	ND<25		ND<25	ND<25	ND<25	ND<25	ND<25	ND<50	ND<25	160	ND<50	ND<25	ND<25				
T-5B		Oct-15	3.7	1,700	62	1.1		ND<0.50	ND<0.50	1.2	ND<0.50	ND<0.50	ND<1.0	ND<0.50	120	ND<1.0	ND<0.50	1				
T-5B	Dup	Oct-18	3.9	1,800	62	1.2		ND<0.50	ND<0.50	1.3	ND<0.50	ND<0.50	ND<1.0	ND<0.50	130	ND<1.0	ND<0.50	1				
T-5B		Oct-16	ND<2.5	170	8.8	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	6.1	ND<5.0	ND<2.5	ND<2.5				
T-5B	Dup	Oct-18	ND<2.5	130	7.3	ND<2.5		ND<2.5	ND<2.5	ND<2.5		ND<2.5		ND<2.5	5.3	ND<5.0	ND<2.5	ND<2.5				
T-5B		Oct-17	ND<50	1500	54	ND<50		ND<50		ND<50	ND<50		ND<100	ND<50	170		ND<50	ND<50				
T-5B	Dup	Oct-17	ND<25	1500	54	ND<25		ND<25		ND<25	ND<25		ND<50	ND<25	160	ND<50	ND<25					
T-5B		Oct-18	ND<25	1,200	39	ND<25		ND<25		ND<25	ND<25	ND<25	ND<50	ND<25	120	ND<50	ND<25					
T-5B	Dup	Oct-18	ND<50	1,200	ND<50	ND<50		ND<50	ND<50	ND<50	ND<50	ND<50	ND<100	ND<50	140	ND<100	ND<50	ND<50				
T-7B (ZB1)		Aug-84	ND	3,000			ND	ND	ND	ND	ND		ND		100	ND	ND					
T-7B		Nov-84	16	4,400			19		6.4				ND			ND						
T-7B		Oct-85	60	3,300			26	ND<25	41	ND<25	ND<25		ND		420	ND	ND<25					
T-7B		Jan-86	ND<25	3,500			ND<25	ND<25	ND<25	ND<25	ND<25		ND			ND	ND<25					
T-7B		Apr-86	ND<25	3,500			ND<25	ND<25	ND<25	ND<25	ND<25	-	ND		ND<25	ND	ND<25					
T-7B		Jul-86	ND<25	5,300			ND<25	ND<25	ND<25	ND<25	ND<25		ND		370	ND	ND<25					
T-7B		Sep-86	ND<25	5,100			ND<25	ND<25	ND<25	ND<25	ND<25		ND		660	ND	ND<25					
T-7B		Jan-87	24	3,100			25	ND<10	ND<10	ND<10	ND<10		ND		360	ND	ND<10					
T-7B		Apr-87	ND<25	3,800			31	ND<25	ND<25	ND<25	ND<25		ND		ND<25	ND	ND<25					
T-7B		Jun-87	ND<25	3,200			ND<25	ND<25	ND<25				ND		87	ND	ND<25					
				· · · ·	1								1									

			T		7			~			<u></u>	7					7					
T-7B		Oct-87	ND<25	2,600			ND<25	ND<25	31	ND<25	ND<25		ND		54	ND	ND<25					
T-7B		Jan-88	ND<25	2,100			ND<25	ND<25	ND<25	ND<25	ND<25		ND		280	ND	ND<25					
T-7B		Jun-88	ND<10	1,300			32	ND<10	ND<10	ND<10	ND<10		ND		56	ND	ND<10					
T-7B		Aug-88	ND<25	1,800			ND<25	ND<25	ND<25	ND<25	ND<25		ND		69	ND	ND<25					
T-7B		Nov-88	ND<10	1,300			ND<10	ND<10	ND<10	ND<10	ND<10		ND		50	ND	ND<10					
T-7B		Feb-89	ND<25	1,600			ND<25	ND<25	ND<25	ND<25	ND<25		ND		420	ND	ND<25					
T-7B		May-89	6.0	1,400			60	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND		25	ND	ND<5.0					
T-7B		Aug-89	5	980			93	13	13	ND<2.0	ND<2.0		ND		40	ND	ND<2.0					
T-7B		Oct-89	ND<10	1,400			110	ND<10	ND<10	ND<10	ND<10		ND		20	ND	ND<10					
T-7B		Jan-90	ND<5.0	960			75	ND<5.0	6.0	ND<5.0	ND<5.0	ND	ND	ND	21	ND	ND<5.0	ND				
T-7B		Apr-90	ND<5.0	680			37	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-7B		Jul-90	ND<2.0	430			20	ND<2.0	2.0	ND<2.0	ND<2.0	ND	ND	ND	17	ND	ND<2.0	ND				
T-7B		Oct-90	ND<5.0	760			60	ND<5.0	6.0	ND<5.0	ND<5.0	ND	ND	ND	22	ND	ND<5.0	ND				
T-7B		Jan-91	ND<5.0	870			62	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	15	ND	ND<5.0	ND				
T-7B		Apr-91	ND<2.0	460			52	ND<2.0	4.0	ND<2.0	ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND				
T-7B		Jul-91	6.0	980			300	ND<5.0	11	ND<5.0		ND	ND	ND	35	ND	ND<5.0	ND				
T-7B		Oct-91	7.0	960			270	ND<5.0	14	ND<5.0		ND	ND	ND	18	ND	ND<5.0	ND				
T-7B		Jan-92	7.0 ND<10	1,800			390	ND<10	29	ND<10	ND<3.0	ND	ND	ND	ND<10	ND	ND<3.0	ND				
T-7B			ND<10	1,800			140	ND<10	ł	}			ND			ND	!	ND				
		Apr-92						1	40	ND<10	ND<10	ND		ND	ND<10		ND<10					
T-7B		Oct-92	1.7	630			41	3.1	5.7	ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND				
T-7B		Oct-93	ND<5.0	590	-		59	ND<10	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	11	ND	ND<5.0	ND				
T-7B		Oct-94	ND<5.0	100			17	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-7B		Oct-95	ND<1.0	42			6.1	ND<2.0	1	ND<1.0	ND<1.0	ND	ND	ND	2.4	ND	ND<1.0	ND				
T-7B		Oct-96	ND<0.5	39	5.3	ND<0.5		ND<0.5		ND<0.5	ND<0.5	ND	ND	ND	1.9	ND	ND<0.5	ND				
T-7B		Oct-97	ND<0.5	18	2.8	ND<0.5		ND<0.5		ND<0.5	ND<0.5	ND	ND	ND	1.9	ND	ND<1.0	ND<0.5				
T-7B		Oct-98	ND<1.0	15	1.3	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	5.1	ND	ND<1.0	ND<1.0				
T-7B		Oct-99	ND<1.0	4.7	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND<1.0				
T-7B		Sep-00	1.6	270	29	ND<1.0		ND<2.0	2.5	1.2	ND<1.0	ND	ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-7B		Oct-00	ND<10	180	24	ND<10		ND<10	ND<10	ND<10	ND<10	ND<10	ND	ND	ND<10	ND	ND<10	ND<10				
T-7B		Nov-00	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND	ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-7B		Dec-00	ND<1.0	1.7	ND<1.0	ND<1.0		ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND	ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-7B		Feb-01	1.2	230	29	ND<1.0		ND<2.0	1.4	ND<1.0	ND<1.0	ND	11	14		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-7B		Apr-01	1.4	200	34	ND<1.0		ND<2.0	1.8	1.2	ND<1.0	ND	20	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-7B		Jun-01	ND<1.0	68	61	ND<1.0		3.6	ND<1.0	1.6	ND<1.0	ND	51	24		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-7B		Aug-01	2.1	340	46	1.3		ND<2.0	1.9	2.4	ND<1.0	ND	8.6	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-7B		Oct-01	ND<5.0	210	25	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	13	ND<5.0	ND<5.0					
T-7B	Dup	Oct-18	ND<5.0	200	25	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<10	ND<5.0	12			ND<5.0				
T-7B		Jan-02	ND<10	300	29	ND<10		ND<10		ND<10	ND<10	ND	ND<20	ND<10	ND<10	ND	ND<10					
T-7B		Apr-02	ND<10	240	24	ND<10		ND<10		ND<10	ND<10	ND	ND<20	ND<10	35	ND		ND<10				
T-7B		Jul-02	ND<10	350	34	ND<10		ND<10		ND<10	ND<10	ND	ND<20	ND<10	60	ND		ND<10				
T-7B		Oct-02	ND<5.0	170	24	ND<5.0		ND<5.0			ND<5.0	ND<5.0	1	ND<10	55			ND<5.0				
T-7B	Dup	Oct-18	ND<2.0	160	24	ND<2.0		2		1	ND<2.0	ND<2.0	ND<4.0	ND<4.0	53			ND<2.0				
T-7B	245	Apr-03	ND<1.0	140	18	ND<1.0		ND<2.0			ND<1.0		ND<2.0	ND<2.0	2.9	ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-7B		Oct-03	ND<5.0	190	28	ND<5.0		ND<5.0	ND<5.0	1			ND<5.0	ND<5.0	ND<10	ND<5.0			ND<5.0	ND<1.0	ND<1.0	ND<10
T-7B	Dup	Oct-18	ND<5.0	190	29	ND<5.0		ND<5.0		ŧ	ND<5.0		ND<5.0	ND<5.0	ND<10	ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<10
T-7B	Dub	Oct-04	ND<5.0	140	 	ND<5.0 ND<1.0		ND<5.0			ND<5.0		ND<3.0			ND<5.0		ND<5.0				
	Dun		1 1		14			-		<u> </u>		1	1		2.3							
T-7B	Dup	Oct-18	ND<1.0	140	14	ND<1.0		ND<1.0		,	ND<1.0	ND<1.0	1	ND<2.0	2.4	ND<4.0	.					
T-7B	D	Oct-05	ND<1.0	95	13	ND<1.0		ND<1.0			ND<1.0			ND<2.0	1.9	ND<1.0						
T-7B	Dup	Oct-18	ND<1.0	88	13	ND<1.0		ND<1.0		1			ND<1.0		1.7	ND<1.0						
T-7B	D.	Oct-06	0.71	80	10	ND<0.5		ND<0.5		L			ND<0.5		1.9	ND<0.5						
T-7B	Dup	Oct-18	0.58	88	10	ND<0.5		ND<0.5	ND<0.5	0.5>טאן	0.5>עא	ND<0.5	ND<0.5	1.0>טא	1.8	ND<0.5	ND<0.5	ND<0.5				

											Ţ			T			7					
T-7B		Oct-07	1.80	190	16	0.63		ND<0.5	0.92	0.65	0.55	ND<0.5	ND<1.0	ND<0.5	6.6	ND<0.5	3.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0
T-7B	Dup	Oct-18	1.70	200	16	0.62		ND<0.5	0.92	0.65	0.57	ND<0.5		ND<0.5	6.4	ND<0.5	3.7	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0
T-7B		Oct-08	ND<2	180	9.4	ND<2		ND<2	ND<2	ND<2	ND<2	ND<2	ND<4	ND<2	5.7	ND<4	3.0	ND<2	ND<2	ND<2	ND<2	ND<4
T-7B	Dup	Oct-18	ND<2	150	7.6	ND<2		ND<2	ND<2	ND<2	ND<2	ND<2	ND<4	ND<2	4.8	ND<4	2.3	ND<2	ND<2	ND<2	ND<2	ND<4
T-7B		Oct-09	0.79	150	10	ND<0.50		0.63	0.52		ND<0.50	1	1	ND<0.50	3.1	ND<1.0	1.2	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-7B	Dup	Oct-18	0.77	140	9.8	ND<0.50		0.60	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	2.8	ND<1.0	1.2	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-7B		Oct-10	ND<1.0	130	12	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	2.7	ND<2.0	1.8	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-7B	Dup	Oct-18	ND<1.0	140	13	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	2.9	ND<2.0	2.0	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-7B		Oct-11	1.1	170	14	0.57		0.82	0.56	0.55	0.5	ND<0.50	ND<1.0	ND<0.50	4	ND<1.0	2.4	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-7B	Dup	Oct-18	1.0	180	14	0.57		0.81	0.58	0.58	ND<0.50	ND<0.50	ND<0.50	ND<0.50	4	ND<1.0	2.6	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-7B		Oct-12	0.55/0.70	160/170	15	0.75/0.79		ND<0.5	0.52/0.55	0.61/0.60	0.51/0.52	ND<0.5	1	ND<0.5	3.2/3.6	ND<1.0	1.6/2.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0
T-7B		Oct-13	0.86	150	10	0.77		0.38 J	0.58	0.73	0.55		ND<1.0	ND<0.50	4.3	ND<1.0	2.2	ND<0.50				
T-7B	Dup	Oct-18	0.85	150	11	0.76		0.39 J	0.59	0.70	0.56		1	ND<0.50	4.3	ND<1.0	2.1	ND<0.50				
T-7B		Oct-14	0.74	170	11	0.78		ND<0.50	ND<0.50	0.61	ND<0.50	ND<0.50	ND<1.0	ND<0.50	3.2	ND<1.0	2.1	ND<0.50				
T-7B	Dup	Oct-18	0.84	170	12	0.97		ND<0.50	0.51	0.74	0.57	ND<0.50	ND<1.0	ND<0.50	4.4	ND<1.0	2.4	ND<0.50				
T-7B		Jun-15	0.54	140	10	0.64		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	2.6	ND<1.0	1.1	ND<0.50				
T-7B	Dup	Jun-18	0.63	150	9.8	0.66		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	2.8	ND<1.0	1.3	ND<0.50				
T-7B		Oct-15	ND<0.50	72	4.8	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	0.81	ND<1.0	ND<0.50	ND<0.50				
T-7B	Dup	Oct-18	ND<0.50	73	4.8	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	0.81	ND<1.0	ND<0.50	ND<0.50				
T-7B	-	Oct-16	ND<0.50	21	1	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-7B	Dup	Oct-18	ND<0.50	21	1	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50				
T-7B	-	May-17	0.54	160	11	0.97		ND<0.50	ND<0.50	0.54	ND<0.50		ND<1.0	ND<0.50	3.2	ND<1.0	1.6	ND<0.50				
T-7B	Dup	May-18	0.62	180	12	1.1	-	ND<0.50	ND<0.50	0.53	ND<0.50		ND<1.0	ND<0.50	3.4	ND<1.0	1.8	ND<0.50				
T-7B	•	Oct-17	ND<5.0	190	9.7	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<10	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0				
T-7B	Dup	Oct-17	0.64	190	12	1.1		ND<0.50	ND<0.50	0.57	ND<0.50		ND<1.0	ND<0.50	4.1	ND<1.0	2.0	ND<0.50				
T-7B	•	Oct-18	ND<0.50	54	2.4	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	1.0	ND<1.0	ND<0.50	ND<0.50				
T-7B	Dup	Oct-18	ND<0.50	57	2.2	ND<0.50 *		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	0.91	ND<1.0	ND<0.50	ND<0.50				
T-8B (ZB1)	***************************************	Aug-84	260	2,300			580	ND	ND	ND	ND		ND		ND	ND	ND					
T-8B		Nov-84	360	2,600			410		6				ND			ND						
T-8B		Oct-85	370	1,600			880	ND<25	63	ND<25	ND<25		ND		200	ND	ND<25					
T-8B		Oct-85	330	1,600			890	ND<25	62	ND<25	ND<25		ND		250	ND	ND<25					
T-8B		Mar-86	810	2,200			1,400	ND<10	ND<10	ND<10	ND<10		ND			ND	ND<10					
T-8B		Mar-86	750	2,800			1,700	ND<10	ND<10	ND<10	ND<10		ND			ND	ND<10					
T-8B		Mar-86	1,100	4,300			3,200	ND<25	ND<25	ND<25	ND<25		ND			ND	ND<25					
T-8B		Apr-86	240	650			1,300	360	ND<5.0	ND<5.0	ND<5.0		ND		ND<5.0	ND	ND<5.0					
T-8B		Jul-86	170	ND<5.0			600	ND<5.0	25	ND<5.0	ND<5.0		ND		ND<5.0	ND	ND<5.0					
T-8B		Jan-87	170	570			560	170	19	4.8	ND<2.5		ND		ND<2.5	ND	90					
T-8B		Jul-87	85	720			990	260	12	ND<10	ND<10		ND		ND<10	ND	17					
T-8B		Oct-87	63	610			610	460	33	4.9	ND<5.0		ND		55	ND	36					
T-8B		Jan-88	79	1,000			610	690	100	ND<10	ND<10		ND		59	ND	41					
T-8B		May-88	40	750			610	770	24	5.2	ND<5.0		ND		24	ND	41					
T-8B		Aug-88	24	370			340	1,800	28	ND<10	ND<10		ND		36	ND	ND<10					
T-8B		Nov-88	25	360			100	490	15	ND<5.0			ND		15	ND	ND<5.0					
T-8B		Feb-89	51	2,500			270	870	ND<25	ND<25	ND<25		ND		ND<25	ND	ND<25					
T-8B		May-89	54	1,700			340	880	ND<10	ND<10	ND<10		ND		ND<10	ND	ND<10					
T-8B		Apr-90	40	1,600			1,400	1,700	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND				
T-8B		Jul-90	26	810			600	390	12	ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-8B		Oct-90	17	600			590	350	10	ND<5.0		ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-8B		Jan-91	26	660			20	ND<5.0	9.0	5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-8B		Apr-91	20	680			90	ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND				
T-8B		Jul-91	18	420			230	ND<2.0	19	6.0	2.0	ND	ND	ND	5.0	ND	6.0	ND				
1 1 1		1 541 61		,_0	<u> </u>	1	200	1 140 -2.0		0.0		1 .10	1 110	1 .10	0.0	, , , ,	L 0.0		1			

T-8B T-8B T-8B	Oct-91	20	//////														1	1 5			. ,
		1 1	440			130	ND<2.0	26 ND 450	6	ND<2.0	ND	ND	ND	ND<2.0	ND	ND<2.0	ND				
1-8B	Jan-92	ND<50	6,000			ND<50	ND<50	ND<50	ND<50	ND<50	ND	ND	ND	160	ND	ND<50	ND				
7.00	Apr-92	14	620			430	110	38	8.0	ND<5.0	ND	ND	ND	ND<5.0	ND	10	ND				
T-8B	Oct-92	13	410			150	62	11	5.3	3.8	ND	ND	ND		ND	17	ND				
T-8B	Apr-93	10	370			260	240	8.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-8B	Oct-93	10	320			350	140	5.0	ND<5.0	ND<5.0	ND	ND	ND	6.0	ND	ND<5.0	ND				
T-8B	Apr-94	13	390			420	220	9.0	ND<5.0	ND<5.0	ND	ND	ND	3.6	ND	10	ND				
T-8B	Oct-94	ND<25	270			320	ND<25	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<25	ND				
T-8B	Apr-95	9.9	240			284	41	4.9	ND<4.0	ND<4.0	ND	ND	ND	ND<4.0	ND	ND<4.0	ND				
T-8B	Oct-95	8.1	230			354.7	37	5.5	3.1	ND<2.5	ND	ND	ND	3.3	ND	3.7	ND				
T-8B	Apr-96	8.2	260			284.3	ND<2.5	4.8	2.5	ND<2.5	ND	ND	ND	ND<2.5	ND	ND<2.5	ND				
T-8B	Oct-96	5.4	200	310	5.2		44	3.8	2.4	1.6	ND	ND	ND	3.2	ND	5.8	ND				
T-8B	Apr-97	7.1	220	320	5.4		28	4.0	3.0	2.0	ND	ND	ND	4.2	ND	4.8	ND				
T-8B	Oct-97	ND<10	210	350	ND<10		35	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<20	ND<10				
T-8B	Apr-98	ND<5.0	200	220	ND<5.0		42	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<20	ND	ND<5.0	ND<30				
T-8B	Oct-98	ND<10	180	200	ND<10		19	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND<10				
T-8B	Apr-99	ND<10	170	160	ND<10		15	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND<10				
T-8B	Oct-99	6.5	190	160	ND<5.0		19		ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	5.8	ND<5.0				
T-8B	Oct-00	ND<10	170	160	ND<10		25	ND<10	ND<10	ND<10		ND	ND	ND<10	ND		ND<10		ND<1.0	ND<1.0	ND<2.0
T-8B	Nov-00	3.6	140	240	3.5		32	3.8	2.2	1.3		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Dec-00	ND<1.0	41	14	1.7		6.8	2	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Feb-01	1.6	65	150	2.4		100	1.3	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		1.7	ND<1.0	1.3
T-8B	Apr-01	1.6	68	99	2.7		99	1.5	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Jun-01	1.9	110	120	3.3		100	2.5	1.4	1.3		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	1.6	ND<2.0
T-8B	Aug-01	2.2	130	140	4.7		110	1.7	1.1	1.1		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Oct-01	1.8	120	120	4.5		ND<2.0	1.9	1.6	1.2		ND<2.0	ND<2.0		ND<2.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Jan-02	1.8	98	90	3.8		76	1.1	1.3	ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		1.6	6.7	7.2
T-8B	Mar-02	2.1	81	78	3.1		92	1.2	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Jul-02	ND<1.0	64	72	ND<1.0		180	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Oct-02	1.6	75	77	ND<1.0		96	1.2	1.2	1.2		ND<2.0	ND<2.0		ND<1.0		ND<1.0	1.1	ND<1.0	ND<1.0	ND<2.0
T-8B	Jan-03	1.7	82	68	2.5		80	1.5	1.2	1.4		ND<2.0	ND<2.0		ND<1.0		ND<1.0				
T-8B	Apr-03	ND<1.0	59	59	2.3		260	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Jul-03	1.1	60	60	3.6		120	ND<1.0	ND<1.0	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Oct-03	ND<5.0	98	79	ND<5.0		230	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-8B	Apr-04	1.7	53	58	3.8		99		ND<1.0	1.5		ND<2.0	ND<2.0		ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-8B	Jul-04	ND<5.0	100	80	ND<5.0		150	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-8B	Oct-04	ND<2.0	33	72	3.0		140			ND<2.0	ND<2.0	ND<4.0		ND<2.0	ND<8.0	6.8	ND<2.0				
T-8B	Apr-05	ND<5.0	47	100	ND<5.0		310	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-8B	Jul-05	ND<5.0	38	150	ND<5.0		120	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-8B	Oct-05	ND<5.0	7.7	190	6.3		160	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0				ND<5.0	ND<5.0	ND<15
T-8B	Jan-06	ND<5.0	9.0	200	5.6		170	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-8B	Apr-06	ND<5.0	7.5	300	14		120	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0				ND<5.0	ND<5.0	ND<15
T-8B	Jul-06	ND<5.0	5.8	230	ND<5.0		64	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-8B	Oct-06	ND<5.0	6.3	220	ND<5.0		47	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-8B	Jan-07	ND<5.0	20.0	260	ND<5.0		120	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-8B	Apr-07	ND<5.0	25.0	180	ND<5.0		65	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-8B	Oct-07	ND<5.0	7.5	220	5.9		35	ND<5.0	i			ND<5.0	ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-8B	Oct-08	ND<2	36	150	3.0		34	ND<2	ND<2	ND<2	ND<2	ND<4	ND<2	ND<2	ND<4	7.1	ND<2	ND<2	ND<2	ND<2	ND<4
T-8B	Oct-09	0.68	29	39	6.6		0.97	ND<0.50					ND<0.50		ND<1.0	1.3				ND<0.50	
T-8B	Oct-10	0.59	22	130	3.5		18	ND<0.50	1			ND<1.0								ND<0.50	
T-8B	Oct-11	0.92	24	190	4.1		21	ND<0.50		0.85		ND<1.0								ND<0.50	

= ^=		A 1 1 A	T 0 1	A			T	1.0						T							T 115 6 5 1	
T-8B		Oct-12	ND<2.5	25	290	11		10	ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<2.5	ND<2.5	ND<5.0	7.6	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0
T-8B		Oct-13	ND<2.5	36	450	8.8		17	ND<2.5	3.0	ND<2.5		ND<5.0		ND<2.5	ND<5.0	10	ND<2.5				
T-8B		Oct-14	ND<0.50	10	270	7.3		16	ND<0.50			ND<0.50	l	ND<0.50		ND<1.0	7.5	ND<0.50				
T-8B		Jun-15	ND<5.0	ND<5.0	150	7.8		55	ND<5.0			ND<5.0	ND<10		ND<5.0	ND<10	ND<5.0	ND<5.0				
T-8B		Oct-15	ND<0.50	1.20	29	2.2		24	ND<0.50			ND<0.50		ND<0.50		ND<1.0	2	ND<0.50				
T-8B		May-16	ND<0.50	4.4	310	5.8		49	ND<0.50		0.82		l	ND<0.50		ND<1.0	5.9	ND<0.50				
T-8B		Oct-16	ND<0.50	0.84	6.2	1.2		10	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0 *	0.5	ND<0.50				
T-8B		Oct-17	ND<10	ND<10	420	ND<10		27	ND<10	ND<10	ND<10		ND<20	ND<10	ND<10	ND<20	ND<10	ND<10				
T-8B	Dup	Oct-17	ND<10	ND<10	420	ND<10		27	ND<10	ND<10	ND<10		ND<20	ND<10	ND<10	ND<20	ND<10	ND<10				
T-8B		Oct-18	ND<10	18	460	ND<10		20	ND<10	ND<10	ND<10	ND<10	ND<20	ND<10	ND<10	ND<20	ND<10	ND<10				
T-9B (ZB1)		Aug-84	330	7,900			ND	ND	ND	ND	ND		ND		700	ND	ND					
T-9B		Nov-84	15	2,900			9		ND<25				ND			ND						
T-9B		Oct-85	320	29,000			ND<50	ND<50	ND<50	ND<50	ND<50		ND		1,200	ND	ND<50					
T-9B		Mar-86	ND<100	9,600			ND<100	ND<100	ND<100	ND<100	ND<100		ND			ND	ND<100					
T-9B		Mar-86	ND<100	16,000			ND<100	ND<100	ND<100	ND<100	ND<100		ND			ND	ND<100					
T-9B		Mar-86	590	14,000			ND<100	ND<100	ND<100				ND			ND	ND<100					
T-9B		Apr-86	98	7,300			ND<25	ND<25		ND<25	ND<25		ND		ND<25	ND	ND<25					
T-9B		Jul-86	ND<50	7,900			ND<50	ND<50	ND<50	ND<50	ND<50		ND		ND<50	ND	ND<50					
T-9B		Jan-87	ND<50	17,000			ND<50	ND<50		ND<50	ND<50		ND		620	ND	ND<50					
T-9B		Jul-87	44	1,300			1300	220	30	ND<10	ND<10		ND		36	ND	54					
T-9B		Oct-87	ND<50	6,900			450	150	ND<50	ND<50	ND<50		ND		390	ND	ND<50					
T-9B		Nov-87	ND<50	3,900			340	150	ND<50	ND<50	ND<50		ND		290	ND						
T-9B		Jan-88	50	4,800			70	ND<10	10	ND<10	ND<10		ND		180	ND	ND<10					
T-9B		Jan-88	ND<100	12,000			ND<100	ND<100	i	ND<100	ND<100		ND		ND<100	ND	ND<100					
T-9B		May-88	360	12,000			710	120		ND<100	ND<100		ND		1,700	ND	ND<100					
T-9B			1	6,000			ND<50	ND<50	ND<50	ND<50	ND<50		ND		ND<50	ND	-					
T-9B		Aug-88	ND<50	5,200			l								l	ND	ND<50					
		Aug-88	36				85 ND<50	18	13	4.7	1.5		ND		170		8					
T-9B		Nov-88	50	6,900			ND<50	ND<50	80 ND <25	ND<50	ND<50		ND		310	ND	ND<50					
T-9B		Feb-89	ND<25	6,400			45	ND<25	ND<25	ND<25	ND<25		ND		200	ND	ND<25					
T-9B		Jun-89	39	3,500			130	73	ND<10	ND<10	ND<10		ND		150	ND	ND<10					
T-9B		Aug-89	61	7,300			ND<50	ND<50	ND<50	ND<50	ND<50		ND		200	ND	ND<50					
T-9B		Oct-89	38	3,800			160	20	ND<10	ND<10	ND<10		ND		50	ND	ND<10					
T-9B		Jan-90	61	6,100			120	ND<50	ND<50	ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<50	ND				
T-9B		Jul-90	30	5,200			420	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-9B		Oct-90	ND<20	3,900			590	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-9B		Jan-91	10	2,200			580	30	ND<10	10	ND<10	ND	ND	ND	20	ND	ND<10	ND				
T-9B		Apr-91	ND<20	2,100			1,200	ND<20		ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-9B		Jul-91	ND<20	3,100			1,100	ND<20	+ + + + + + + + + + + + + + + + + + +	ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-9B		Oct-91	ND<20	3,200			340	ND<20		ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-9B		Jan-92	ND<30	4,100			ND<30	ND<30		ND<30	ND<30	ND	ND	ND	ND<30	ND	ND<30	ND				
T-9B		Apr-92	ND<50	5,600			ND<50	ND<50		ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<50	ND				
T-9B		Oct-92	36	5,100			ND<500	19		ND<0.5	3.4	ND	ND	ND		ND	6.1	ND				
T-9B		Apr-93	ND<50	3,200			75	ND<100		ND<50	ND<50	ND	ND	ND	69	ND	ND<50	ND				
T-9B		Oct-93	14	1,900			99	35		ND<5.0	ND<5.0	ND	ND	ND	51	ND	ND<5.0	ND				
T-9B		Apr-94	22	1,300			110	55		ND<5.0	ND<5.0	ND	ND	ND	28	ND	5.0	ND				
T-9B		Oct-94	ND<25	1,200			120	ND<25		ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<25	ND				
T-9B		Apr-95	ND<20	1,300			110	ND<40	ND<20	ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-9B		Oct-95	11	1,100			190	22	ND<10	ND<10	ND<10	ND	ND	ND	12	ND	ND<10	ND				
T-9B		Apr-96	19	1,000			120	15	ND<2.5	ND<2.5	ND<2.5	ND	ND	ND	9.3	ND	6.1	ND				
T-9B		Oct-96	12	1,200	110	ND<5.0		25	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	13	ND	ND<5.0	ND				
T-9B		Apr-97	15	1,300	130	ND<6.3		33	ND<6.3			ND	ND	ND	26	ND	8.1	ND				

T		T 0.107	ND 50	4.000	1 450	ND 50	T ND .EO	L ND -50	ND :50	T ND 450	l No	N.D.	T 115	ND 150	N.D.	IND 400	L ND .EO	T 1			
T-9B		Oct-97	ND<50	1,600	150	ND<50	 ND<50	ND<50	ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<100					
T-9B		Apr-98	ND<100	2,200	130	ND<100	 ND<100	ND<100			ND	ND	ND	ND<400	ND	!	ND<600				
T-9B	Dup	Apr-98	ND<100	2,000	ND<100	ND<100	 ND<100	ND<100			ND	ND	ND	ND<400	ND	ND<100					
T-9B		Oct-98	ND<25	1,000	130	ND<25	 37	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<25					
T-9B		Apr-99	ND<100	1,200	170	ND<100	 ND<100	ND<100			ND	ND	ND	ND<100	ND	1	ND<100				
T-9B	Dup	Apr-99	ND<100	1,100	160	ND<100	 ND<100	ND<100			ND	ND	ND	ND<100	ND	ND<100					
T-9B		Oct-99	ND<25	1,000	170	ND<25	 46	ND<25	ND<25	ND<25	ND ND 470	ND	ND	ND<25	ND	ND<25	ND<25				
T-9B		Oct-00	ND<70	1,000	200	ND<70	 ND<70	ND<70	ND<70	ND<70	ND<70	ND ND	ND ND 440	ND<70	ND	ND<70	ND<70				 ND 440
T-9B		Aug-01	ND<10	460	160	ND<10	 ND<10	ND<10	ND<10	ND<10		ND<10	ND<10		ND ND 440		ND<10	ND<10	ND<10	ND<10	ND<10
T-9B		Oct-01	ND<10	780	150	ND<10	 ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<20	ND<40	ND<40	ND<10	ND<10				
T-9B		Jan-02	ND<10	680	270	ND<10	 ND<10	ND<10	ND<10	ND<10	ND	ND<20	ND<10	ND<10	ND	ND<10	ND<10				
T-9B		Apr-02	ND<5.0	510	210	ND<5.0	 5.3		ND<5.0	ND<5.0	ND	ND<10	ND<5.0	ND<5.0	ND	ND<5.0	ND<5.0				
T-9B		Jul-02	ND<5.0	460	190	ND<5.0	 ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND CO. 5	ND<10	ND<5.0	ND<5.0	ND ND 440	ND<5.0	ND<5.0				
T-9B		Oct-02	3.4	460	180	3.7	 8.7	ND<2.5	2.8	ND<2.5	ND<2.5	ND<5.0	ND<5.0	5.3	ND<10	ND<2.5	ND<2.5				
T-9B		Apr-03	2.0	550	240	3.6	 19	1.7	4.3	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0	ND (E 0	ND<1.0	ND<1.0	ND<2.0
T-9B		Oct-03	ND<5.0	390	560	7.8	 38	ND<5.0	6.4	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-9B T-9B		Oct-04	ND<5.0 ND<5.0	470 16	300 630	5.1	 33 150	ND<5.0 ND<5.0	ND<5.0	ND<5.0	 ND<5.0	ND<5.0 ND<5.0	ND<5.0	 ND<5.0	ND<5.0	 ND-5 0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
		Oct-05		16	-	5.9	 1		ND<5.0	ND<5.0			ND<10	l	ND<5.0	ND<5.0	ND<5.0 ND<0.5				
T-9B		Oct-06	ND<0.5	4.6 470	31	1.4	 30	ND<0.5	ND<0.5	0.51	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<0.5	0.61		ND < 0.5	 ND0 5	ND-0 5	ND<10
T-9B T-9B		Oct-07	4.4 ND-5		190	3.2 ND<5	 9.8	ND<0.5	2.2	0.83	ND<0.5	ND<1.0	ND<0.5	8.4	ND<1.0	1.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0
		Oct-08	ND<5	280	_		 ND<5	ND<5	ND<5	ND<5	ND<5	ND<10	ND<5	7.9	ND<10	ND<5	ND<5	ND<5	ND<5	ND<5	ND<10
T-9B		Oct-09	ND<10	31 96	290 250	ND<10	 69	ND<10 ND<0.50	ND<10	ND<10	ND<10 ND<0.50	ND<20	ND<10	ND<10	ND<20	ND<10	ND<10	ND<10	ND<10	ND<10	ND<20
T-9B T-9B		Oct-10	0.87	110	350	3.4	 12			0.76 ND<5.0	ND<0.50		ND<0.50 ND<5.0	1.0 ND<5.0	ND<1.0	1.1 ND<5.0	ND<0.50 ND<5.0	ND<0.5 ND<5.0	ND<0.5 ND<5.0	ND<0.5 ND<5.0	ND<1.0
T-9B		Oct-11	ND<5.0	130	360	ND<5.0	 5.1 ND<5.0	ND<5.0	ND<5.0 ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	l	ND<10 ND<10	ND<5.0		ND<5.0			ND<10
T-9B		Oct-12 Oct-13	ND<5.0 2.2 J	410	280	5.1 5.0	 3.6 J	ND<5.0 ND<5.0		ND<5.0	ND~5.0	ND<10 ND<10	ND<5.0	ND<10 1.5 J	ND<10	ND<5.0			ND<5.0	ND<5.0	ND<10
T-9B		Oct-13	ND<5.0	390	210	0.0 ND<5.0	 ND<5.0	ND<5.0	3.3 J ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0				
T-9B		Jun-15	2.2	390	220	3.3	 2.3	ND<0.50			ND<0.50		ND<0.50	1.0	ND<10	0.82	ND<0.50				
T-9B		Oct-15	ND<2.5	150	150	ND<2.5	 ND<2.5		ND<2.5	ND<2.5	ND<0.50	ND<1.0	ND<0.30	ND<2.5	ND<1.0	ND<2.5					
T-9B		May-16	1.5	270	240	3.2	 2.2	ND<2.3	1.9	ND<2.3		ND<3.0	ND<2.3	ND<2.3	ND<3.0	ND<2.3					
T-9B		Oct-16 (29 ft)	ND<0.50	4	2.9	ND<0.50	 ND<0.50	ND<0.50					ND<0.50			<u> </u>	ND<0.50				
T-9B		Oct-16 (29 ft)	ND<0.30	100	93	ND<0.30	 ND<2.5		ND<2.5	ND<2.5	ND<0.50		ND<0.50	ND<2.5	ND<1.0	ND<2.5					
T-9B		Jan-17	1.9	300	280	3.5	 2.6	ND<0.50		0.68			ND<0.50	1.0	ND<1.0	0.79	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-9B		Jan-17	1.5	230	330	3.4	 7.3	ND<0.50		0.72			ND<0.50	1.6	ND<1.0	0.73	ND<0.50		ND<0.50	ND<0.50	ND<1.0
T-9B		Oct-17	1.7	310	260	3.5	 2.1	ND<1.0	2.3	ND<1.0		ND<2.0	ND<1.0	1.0	ND<2.0	ND<1.0	ND<1.0				
T-9B		Oct-18	ND<0.50	170	220	2.9	 1.4 *	ND<0.50					ND<0.50	1 1		i .	ND<0.50				
T-10B (ZB1)	***************************************	Oct-00	ND<20	170	110	ND<15	 ND<15	ND<15	ND<15	ND<15	ND<15	ND<15	ND<20	ND<20	ND<15	ND<15	ND<15				
T-10B		Jan-01	13	210	130	2.7	 12	2.9	1.2	ND<1.0		ND<2.0	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-10B		Apr-01	9.6	160	100	ND<2.5	 20			ND<2.5	ND	ND<10	ND<2.5	ND<10	ND	9.6	ND<2.5				
T-10B		Aug-01	7.6	170	110	ND<5.0	 27	ND<5.0				ND<5.0	ND<5.0		ND			ND<5.0	ND<5.0	ND<5.0	ND<5.0
T-10B		Oct-01	8.2	160	75	ND<5.0	 ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<10	ND<20	ND<20	ND<5.0					
T-10B		Jan-02	14	230	130	ND<2.5	 25			ND<2.5	ND	ND<2.5	ND<5.0	ND<2.5	ND	12	ND<2.5				
T-10B		Apr-02	12	200	110	ND<2.5	 15			ND<2.5	ND		ND<5.0	ND<2.5	ND	10	ND<2.5				
T-10B		Jul-02	10	170	97	ND<2.5	 16			ND<2.5	ND	ND<2.5	ND<5.0	ND<2.5	ND	6.9	ND<2.5				
T-10B		Oct-02	8.9	130	56	2.8	 11			ND<1.0	ND<1.0	ND<2.0	ND<2.0	1.4	ND<4.0	8.4	ND<1.0				
T-10B		Oct-03	12	140	73	2.1	 43			ND<2.0	ND<2.0	ND<4.0		ND<2.0	ND<8.0	10	ND<2.0				
T-10B		Oct-04	11	170	57	2.0	 29			ND<1.0	ND<1.0	ND<2.0	ND<2.0	1.1	ND<4.0	10	ND<1.0				
T-10B		Oct-05	9.9	180	79	ND<5.0	 39	ND<5.0				ND<5.0	ND<5.0	ND<5.0	ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-10B		Jan-06	10	170	190	ND<5.0	 51			ND<5.0			ND<5.0		ND<5.0			ND<5.0	ND<5.0	ND<5.0	ND<15
T-10B		Apr-06	20	150	190	10.0	 17			ND<5.0			ND<5.0		ND<5.0				ND<5.0	ND<5.0	ND<15
T-10B		Jul-06	8.1	150	170	ND<5.0	 9.3			ND<5.0			ND<5.0		ND<5.0				ND<5.0		ND<15
1 100		1 501 55		1.50	1 110	110 0.0	1 0.0	1 115 10.0	. 15 .0.0	1 110 10.0		1 1 10 10.0	1 110 10.0		1,10 .0.0	1	1,10 .0.0	1	. 10 .0.0	110 .0.0	140 -10

										Y									y	-	***************************************
T-10B		Oct-06	7.8	120	130	ND<5.0		6.2	ND<5.0 ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-10B		Jan-07	12.0	130	140	ND<5.0		17.0	ND<5.0 ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-10B		May-07	7.2	80	87	ND<5.0		8.9	ND<5.0 ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-10B		Jul-07	5.4	65	61	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-10B		Oct-07	6.6	86	62	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-10B		Oct-08	2.1	45	48	1.8		10	ND<0.5 ND<0.5	0.82	ND<0.5	ND<1	ND<0.5	ND<0.5	ND<1	3.2	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1
T-10B		Oct-09	0.94	20	49	1.4		9.8	ND<0.50 ND<0.50	0.55	ND<0.50	1	ND<0.50		ND<1.0	1.5	ND<0.50	1.5	ND<0.50	ND<0.50	ND<1.0
T-10B		Oct-10	2.0	44	97	2.3		23	ND<0.50 0.57	0.77	-		ND<0.50		ND<1.0	3.7	ND<0.50		ND<0.5	ND<0.5	ND<1
T-10B		Oct-11	3.2	48	110	3.0		24	ND<0.50 1.2	1 0.770	ND<0.50		ND<0.50		ND<1.0	5.2	ND<0.50		ND<0.5	ND<0.5	1.2
T-10B T-10B		Oct-12	2.7	50	140	3.1		21	ND<0.50 0.99	0.76	ND<0.50	1	ND<0.50		ND<1.0	5.4	ND<0.50		ND<0.50	ND<0.50	ND<1.0
T-10B		Oct-13	0.59	17 45	50 180	0.21 J		ND<0.50	ND<0.50 ND<0.50 ND<0.50 1.1	0.43 J	ND-0 EO		ND<0.50 *	ND<0.50		1	ND<0.50 ND<0.50				
T-10B		Oct-14 Oct-15	2.1 0.84	31	97	3.3 1.8		16	ND<0.50 1.1 ND<0.50 0.52	0.82	ND<0.50		ND<0.50		ND<1.0 ND<1.0	4.8 1.9	ND<0.50				
T-10B		May-16	0.81	21	140	1.0		74	ND<0.50 0.52	0.69		1	ND<0.50	 	ND<1.0	3.4	ND<0.50				
T-10B		Oct-16	ND<0.50	ND<0.50	8.6	8.3		61	ND<0.50 ND<0.50		ND<0.50	1	ND<0.50	1	ND<1.0	0.85	ND<0.50				
T-10B		Oct-17	1.6	41	150	3.5		50	ND<0.50 0.94	0.65		-	ND<0.50		ND<1.0	4.2	ND<0.50				
T-10B		Oct-18	ND<0.50	2.8	15	1.2		5.3	ND<0.50 ND<0.50		1	<u> </u>	ND<0.50		ND<1.0	1.1	ND<0.50				
T-17B (ZB1)		Jan-06	ND<5.0	400	280	ND<5.0		ND<5.0	ND<5.0 ND<5.0			ND<5.0	ND<5.0		ND<5.0	 	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-17B		Apr-06	ND<5.0	340	420	6.8		ND<5.0	ND<5.0 ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-17B		Jul-06	ND<5.0	200	460	ND<5.0		ND<5.0	ND<5.0 ND<5.0	l		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-17B		Oct-06	ND<5.0	240	280	ND<5.0		ND<5.0	ND<5.0 ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-17B		Jan-07	12	660	220	ND<5.0		ND<5.0	ND<5.0 ND<5.0			ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-17B		May-07	ND<5.0	430	140	ND<5.0		11	ND<5.0 ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-17B		Jul-07	ND<5.0	450	87	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-17B		Oct-07	ND<5.0	610	79	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15
T-17B		Oct-08	ND<5	400.0	62	ND<5		ND<5	ND<5 ND<5	ND<5	ND<5	ND<10	ND<5	20	ND<10	ND<5	ND<5	ND<5	ND<5	ND<5	ND<10
T-17B		Oct-09	ND<0.50	69.0	190	3.5		ND<0.50	ND<0.50 0.69		ND<0.50	1	ND<0.50	2.1	ND<1.0	1			ND<0.50	ND<0.50	1
T-17B		Oct-10	ND<5.0	120	320	ND<5.0		ND<5.0	ND<5.0 ND<5.0		ND<5.0	ND<10	ND<5.0	ND<5.0	ND<10				ND<0.50	ND<0.50	
T-17B		Oct-11	ND<5.0	270	230	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	8.1	ND<10	-		ND<5.0	ND<5.0	ND<5.0	ND<10
T-17B		Apr-12	ND<5.0	110	510	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	8.9	ND<10		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-17B	Dup	Apr-18	ND<5.0	110	490	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	9.9	ND<10	-}	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-17B		Oct-12	ND<5.0	310	230	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	14	ND<10		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-17B		May-13	ND<5.0	120	370	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0		ND<10	ND<5.0	ND<5.0	ND<10	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<10
T-17B		Oct-13	ND<5.0	130	390	ND<5.0		ND<5.0	ND<5.0 ND<5.0	ND<5.0		ND<10	ND<5.0	ND<5.0	ND<10	ND<5.0	 				
T-17B		Apr-14	ND<5.0	55	370	ND<5.0		ND<5.0	ND<5.0 ND<5.0		ND<5.0	ND<10	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-17B		Oct-14	ND<5.0	75	400	ND<5.0		ND<5.0		•	1	L	ND<5.0				ND<5.0				
T-17B		Jun-15	1.0	230	310	2.7	M0 M0	0.50	ND<0.50 1.7	l	<u>.</u>	1	ND<0.50				ND<0.50		ex ex		
T-17B		Oct-15	0.88	280	290	1.9		0.51	ND<0.50 1.1				ND<0.50				ND<0.50				
T-17B		May-16	0.63	180	260	1.7		.1	ND<0.50 0.95	ND<0.50		1	ND<0.50				ND<0.50				
T-17B		Oct-16	ND<2.5	190	200	ND<2.5		ND<2.5	ND<2.5 ND<2.5		ND<2.5	<u> </u>	ND<2.5	8.2			ND<2.5				
T-17B		Oct-17	ND<5.0	210	370	ND<5.0		ND<5.0	ND<5.0 ND<5.0			ND<10	ND<5.0	7.1			ND<5.0				
T-17B		Oct-18	ND<5.0	170	300	ND<5.0		ND<5.0	ND<5.0 ND<5.0		ND<5.0	1	ND<5.0	7.4		_1	ND<5.0				
T-18B (ZB1)		May-13	ND<0.50	ND<0.50	ND<0.50	ND<0.50			ND<0.50 ND<0.50			}	ND<0.50	··				ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-18B		Oct-13	ND<0.50	ND<0.50	ND<0.50	ND<0.50			ND<0.50 ND<0.50				ND<0.50			_1	ND<0.50				
T-18B		Oct-14	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1	ND<0.50 ND<0.50	•	5						ND<0.50				
T-18B		Oct-15	ND<0.50	ND<0.50	ND<0.50	ND<0.50			ND<0.50 ND<0.50							_1	ND<0.50				
T-18B		Oct-16	ND<0.50	ND<0.50	ND<0.50	ND<0.50			ND<0.50 *ND<0.50								ND<0.50				
T-18B		Oct-17	ND<0.50	ND<0.50	ND<0.50	ND<0.50			ND<0.50 ND<0.50				ND<0.50			_1	ND<0.50	L			
T-18B		Oct-18	ND<0.50	ND<0.50	ND<0.50	ND<0.50	mo so		ND<0.50 ND<0.50								ND<0.50				
T-19B (ZB1)		May-13	ND<0.50	53	1.9	ND<0.50			ND<0.50 ND<0.50				ND<0.50						ND<0.50	ND<0.50	ND<1.0
T-19B		Oct-13	ND<0.50	56	1.8	ND<0.50		1	ND<0.50 ND<0.50	l			ND<0.50				ND<0.50				
T-19B		Oct-14	ND<0.50	52	2.2	ND<0.50		4	ND<0.50 ND<0.50								ND<0.50				

		T			T			T		T	r	· · · · · · · · · · · · · · · · · · ·	T			T	T		
T-19B	Oct-15	ND<0.50	49	1.8	ND<0.50		1	ND<0.50			ł	l		1.0		I	ND<0.50	 	
T-19B	Oct-16	ND<0.50	44	1.5	ND<0.50			ND<0.50 *			!			H	ND<1.0			 	
T-19B	Oct-17	ND<0.50	62	1.4	ND<0.50		<u> </u>	ND<0.50			ł	l	ND<0.50	1.1		1	ND<0.50	 	
T-19B	Oct-18	ND<0.50	57	1.3	ND<0.50 *		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	1.2		<u> </u>	ND<0.50	 	
T-20B	Oct-17	ND<5.0	230	280	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<10 *	ND<5.0	ND<5.0	ND<10	ND<5.0	ND<5.0	 	
T-20B	Oct-18	ND<0.50	230	190	2.1		ND<0.50	ND<0.50	1.4	ND<0.50	ND<0.50	ND<1.0	ND<0.50	2.1	ND<1.0	ND<0.50	ND<0.50	 	
T-21B	Oct-17	ND<0.50	250	460	2.0		ND<0.50	ND<0.50	1.5	ND<0.50		ND<1.0	ND<0.50	16	ND<1.0	ND<0.50	ND<0.50	 	
T-21B	Oct-18	ND<5.0	430	310	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	15	ND<10	ND<5.0	ND<5.0	 	
T-22B	Oct-17	1.6	97	130	3.3		0.56	ND<0.50	0.83	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	3.0	ND<0.50	 	
T-22B	Oct-18	1.3	79	120	3.1		0.69	ND<0.50	0.95	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	2.1	ND<0.50	 	
T-23B	Oct-17	1.3	86	100	2.7		0.64	ND<0.50	0.77	ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<1.0	2.6	ND<0.50	 	
T-23B	Oct-18	1.7	95	140	3.0		0.61	ND<0.50	0.89	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	3.0	ND<0.50	 	
T-24B	Oct-17	ND<0.50	63	130	1.4		4.0	ND<0.50	1.5	0.60		L	ND<0.50	L	ND<1.0	ND<0.50	ND<0.50	 	
T-24B	Oct-18	ND<0.50	48	100	1.1		3.9	ND<0.50	1.6	0.50	ND<0.50	i	ND<0.50			1	ND<0.50	 	
T-2C (ZB2)	Aug-84	10	2300			12	ND	ND	6	ND		ND	ND	1000	ND	ND		 	
T-2C	Aug-84	7.2	760			2.5		1	ND<0.1			ND	ND	39	ND			 	
T-2C	Nov-84	8.4	4400			13		ND<1.0				ND	ND		ND			 	
T-2C	Oct-85	ND<25	4200			31	ND<25	ND<25	ND<25	ND<25		ND	ND	950	ND	ND<25		 	
T-2C	Mar-86	ND<25	5500			ND<25	ND<25	ND<25	ND<25	ND<25		ND	ND		ND	ND<25		 	
T-2C	Mar-86	49	4200			ND<25	ND<25	ND<25	ND<25	ND<25		ND	ND		ND	ND<25		 	
T-2C	Apr-86	ND<2.0	1200			ND<23	ND<2.0		ND<2.0	ND<2.0		ND	ND	ND<2.0	ND	ND<2.0		 	
T-2C	Jul-86	ND<2.0	2000			ND<10	ND<2.0	ND<10	ND<10	ND<10		ND	ND	650	ND	ND<10		 	
T-2C	Jan-87	ND<10	3300			ND<10	ND<10	ND<10	ND<10	ND<10		ND	ND	170	ND	ND<10			
							1	l								<u> </u>		 	
T-2C	Jul-87	ND<25	4200			ND<25	ND<25	ND<25	ND<25	ND<25		ND	ND	220	ND	ND<25		 	
T-2C	Oct-87	ND<25	3500			ND<25	ND<25	ND<25	ND<25	ND<25		ND	ND	240	ND	ND<25		 	
T-2C	Jan-88	ND<100	4400			ND<100	ND<100	1	ND<100	ND<100		ND	ND	ND<100	ND	ND<100		 	
T-2C	Jun-88	ND<10	5500			ND<10	ND<10	ND<10	ND<10	ND<10		ND	ND	330	ND	ND<10		 	
T-2C	Aug-88	ND<25	3400			ND<25	ND<25	36	ND<25	ND<25		ND	ND	400	ND	ND<25		 	
T-2C	Nov-88	65	3000			ND<50	ND<50	ND<50	ND<50	ND<50		ND	ND	440	ND	ND<50		 	
T-2C	Feb-89	ND<25	3100			ND<25	ND<25	ND<25	ND<25	ND<25		ND	ND	220	ND	ND<25		 	
T-2C	May-89	ND<25	3900			ND<25	ND<25	ND<25	ND<25	ND<25		ND	ND	270	ND	ND<25		 	
T-2C	May-89	ND<25	3500			ND<25	ND<25	ND<25	ND<25	ND<25		ND	ND	230	ND	ND<25		 	
T-2C	Aug-89	ND<25	4300			ND<25	ND<25	25	ND<25	ND<25		ND	ND	420	ND	ND<25		 	
T-2C	Oct-89	ND<20	3300			ND<20	ND<20	ND<20	ND<20	ND<20		ND	ND	180	ND	ND<20		 	
T-2C	Jan-90	ND<20	3600			ND<20	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	390	ND	ND<20	ND	 	
T-2C	Apr-90	ND<20	4900			ND<20	ND<20		ND<20	ND<20	ND	ND	ND	370	ND	ND<20	ND	 	
T-2C	Jul-90	ND<20	3300			ND<20	ND<20	·	ND<20	ND<20	ND	ND	ND	240	ND	ND<20	ND	 	
T-2C	Oct-90	ND<20	2100			ND<20	ND<20		ND<20	ND<20	ND	ND	ND	90	ND	ND<20	ND	 	
T-2C	Jan-91	ND<20	4000			ND<20	ND<20		ND<20	ND<20	ND	ND	ND	220	ND	ND<20	ND	 	
T-2C	Apr-91	ND<20	2400			ND<20	ND<20		ND<20	ND<20	ND	ND	ND	50	ND	ND<20	ND	 	
T-2C	Jul-91	ND<20	3900			ND<20	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	210	ND	ND<20	ND	 	
T-2C	Oct-91	ND<20	4700			120	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	200	ND	ND<20	ND	 	
T-2C	Jan-92	ND<30	5200			ND<30	ND<30	ND<30	ND<30	ND<30	ND	ND	ND	120	ND	ND<30	ND	 	
T-2C	Apr-92	ND<20	2800			ND<20	ND<20		ND<20	ND<20	ND	ND	ND	60	ND	ND<20	ND	 	
T-2C	Oct-92	3.9	8200			13.7	ND<1.0		ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND	 	
T-2C	Apr-93	ND<50	3400			ND<50	ND<100		ND<50	ND<50	ND	ND	ND	210	ND	ND<50	ND	 	
T-2C	Oct-93	ND<5.0	3000			10	ND<10		ND<5.0	ND<5.0	ND	ND	ND	180	ND	ND<5.0	ND	 	
T-2C	Apr-94	ND<5.0	7200			20	ND<5.0		ND<5.0	ND<5.0	ND	ND	ND	200	ND	ND<5.0	ND	 	
T-2C	Oct-94	ND<50	3600			ND<50	ND<50		ND<50	ND<50	ND	ND	ND	300	ND	ND<50	ND	 	
T-2C	Aug-95	ND<40	2000			ND<40	ND<80	1	ND<40	ND<40	ND	ND	ND	51	ND	ND<40	ND	 	
T-2C	Oct-95	ND<25	3100			ND<25	ND<50		ND<25		ND	ND	ND	280	ND	ND<25	ND	 	
1 20	1 00:-90	140 -20	0.100			140 20	1 140 100	110 20	140 120	140 20	140	שויי	1 140	200	IND	1110 20	1 110	 	

			T T		T						T	r		r			r	r	I	T		
T-2C		Oct-96	ND<17	4000	21	ND<17		34	ND<17	ND<17	ND<17	ND	ND	ND	260	ND	ND<17	ND				
T-2C		Apr-97	ND<25	4000	28	ND<25		34	ND<25	ND<25	ND<25	ND	ND	ND	420	ND	ND<25	ND				
T-2C		Oct-97	ND<100	3600	ND<100	ND<100		ND<100	ND<100		ND<100	ND	ND	ND	400	ND	<u> </u>	ND<100				
T-2C		Apr-98 **	ND<50	3500	ND<50	ND<50		ND<50	ND<50	ND<50	ND<50	ND	ND	ND	320	ND	ND<50	ND<50				
T-2C		Oct-98	ND<25	1000	130	ND<25		ND<25	ND<25	ND<25	ND<25	ND	ND	ND	92	ND	ND<25	ND<25				
T-2C		Apr-99	ND<100	3600	ND<100	ND<100		ND<100	ND<100		l	ND	ND	ND	410	ND	.	ND<100				
T-2C		Oct-99	ND<100	4600	ND<100	ND<100		ND<100	ND<100		l	ND	ND	ND	510	ND		ND<100				
T-2C	Dup	Oct-99	ND<100	4000	ND<100	ND<100		ND<100	ND<100			ND	ND	ND	440	ND	ND<100					
T-2C		Oct-00	ND<100	2700	110	ND<100		ND<100	ND<100		ND<100	ND<100	ND	ND	380	ND		ND<100				
T-2C		Jan-01	3.3	3400	70	2.5		20	ND<1.0	6.6	ND<1.0		12	ND<2.0		ND		ND<1.0		ND<1.0	ND<1.0	ND<2.0
T-2C		Mar-01	ND<25	1800	79	ND<25		52	ND<25	ND<25	ND<25	ND	ND<25	ND<25	ND<100	ND	ND<25	ND<25				
T-2C		Jun-01	ND<25	1300	630	ND<25		110	ND<25	ND<25	ND<25	ND	ND<25	ND<25	ND<100	ND	ND<25	ND				
T-2C		Oct-01	7	1500	220	2.3		49	ND<1.0	2	ND<1.0		5.1	ND<2.0		ND<1.0		1.4		5.8	ND<1.0	19.9
T-2C		Jan-02	ND<25	1800	110	ND<25		45	ND<25	ND<25	ND<25	ND	ND<25	ND<50	ND<25	ND	ND<25	ND<25				
T-2C		Apr-02	ND<25	1500	74	ND<25		32	ND<25	ND<25	ND<25	ND	ND<25	ND<50	ND<25	ND	ND<25	ND<25				
T-2C		Jul-02	ND<25	1500	47	ND<25		42	ND<25	ND<25	ND<25	ND ND to 5	ND<25	ND<50	ND<25	ND ND	ND<25	ND<25				
T-2C		Oct-02	ND<2.5	400	59	ND<2.5		2.7		ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<5.0	11	ND<10	ND<2.5	ND<2.5				
T-2C		Apr-03	ND<1.0	1300	47	ND<1.0		52	1.7	1.9	ND<1.0		ND<2.0	ND<2.0		ND<1.0		ND<1.0	ND :5.0	ND<1.0	ND<1.0	ND<2.0
T-2C		Oct-03	ND<5.0	340	56	ND<5.0		6.7		ND<5.0	ND<5.0		ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10
T-2C		Oct-04	ND<2.0	280	37	ND<2.0		ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<4.0	6.3		ND<2.0	ND<2.0				
T-2C		Oct-05	ND<2.0	260	38	ND<2.0		ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	4.8		ND<2.0	ND<2.0				
T-2C		Oct-06	ND<2.0	190	28	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	2.8	ND<2.0	ND<2.0	ND<2.0				 ND 44.0
T-2C		Oct-07	2.3	1200	43	ND<2.0		6.8	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	36	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0
T-2C		Oct-08	ND<1	130	33	ND<1		1.6	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	2.3	ND<2	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2
T-2C		Oct-09	0.65	460	94	2.0		33	ND<0.50	1.4	ND<0.50	<u> </u>		ND<0.50	9.2					ND<0.50	ND<0.50	ND<1.0
T-2C		Oct-10	ND<0.50	81	22	0.60		ND<0.50			ND<0.50	!		ND<0.50	0.56		.			ND<0.50	ND<0.50	ND<1.0
T-2C T-2C		Oct-11 Oct-12	ND<0.50 ND<5.0	310 310	88 160	1.1 ND<0.50		11 19	ND<0.50 ND<5.0	1.4 ND<5.0	ND<0.50 ND<5.0	ND<0.50		ND<0.50 ND<5.0	3 ND<5.0		!	ND<0.50	ND<0.50	ND<0.50 ND<5.0	ND<0.50 ND<5.0	ND<1.0 ND<10
T-2C		Oct-12	ND<0.50	110	44	ND<0.50		ND<0.50	ND<5.0							ND<10			ND~5.0	ND~5.0	ND~5.0	וטרוטו
T-2C			ND<0.50	150	48	0.80		0.59	ND<0.50		ND<0.50	 ND<0.50		ND<0.50	0.94		l		ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-2C		Apr-14 Sep-14	ND<0.50	280	120	1.6		8.5	ND<0.50		ND<0.50	!		ND<0.50	1.3		.	ND<0.50	ND~0.50			
T-10C (ZB2)		Jul-86	ND<1.0	6,800			ND<1.0	ND<1.0	44	54	ND<1.0		ND ND		1,600	ND ND	ND<1.0					
T-10C (2B2)		Jul-86	ND<1.0	5,400			ND<1.0	ND<1.0	ND<25	ND<25	ND<1.0		ND		2,700	ND	ND<1.0					
T-10C		Sep-86	130	3,600			ND<25	ND<25	ND<25	ND<25	ND<25		ND		1,100	ND	ND<25					
T-10C		Jan-87	ND<50	9,500			ND<50	ND<50	ND<50	ND<50	ND<50		ND		700	ND	ND<50					
T-10C		Apr-87	ND<10	2,000			ND<10	ND<10	ND<10	66	ND<10		ND		360	ND	ND<10					
T-10C		Jun-87	ND<10	4,200			ND<16	ND<25	ND<16	ND<25	ND<25		ND		460	ND	ND<25					
T-10C		Oct-87	ND<50	6,700			ND<50	ND<50	60	ND<50	ND<50		ND		1,700	ND	ND<50					
T-10C		Jan-88	ND<100	10,000			ND<100	ND<100		ND<100	ND<100		ND		3,200	ND	ND<100					
T-10C		May-88	ND<50	7,100			ND<50	ND<50	100	ND<50	ND<50		ND		640	ND	ND<50					
T-10C		Aug-88	ND<100	16,000			ND<100	ND<100		ND<100	ND<100		ND		2,300	ND	ND<100					
T-10C		Nov-88	ND<50	12,000			ND<50	ND<50	200	50	ND<50		ND		1,400	ND	ND<50					
T-10C		Feb-89	ND<250	9,300			ND<250	ND<250		ND<250	ND<250		ND		550	ND	ND<250					
T-10C		May-89	13	14,000			10.3	ND<0.2	320	80	10		ND		1,900	ND	ND<0.2					
T-10C		May-89	ND<50	13,000			ND<50	ND<50	250	ND<50	ND<50		ND		1,700	ND	ND<50					
T-10C		Aug-89	ND<50	13,000			ND<50	ND<50	200	ND<50	ND<50		ND		1,500	ND	ND<50					
T-10C		Oct-89	ND<50	13,000			ND<50	ND<50	ND<50	ND<50	ND<50		ND		3,400	ND	ND<50					
T-10C		Jan-90	ND<100	16,000			ND<100	ND<100	ND<100		ND<100	ND	ND	ND	1,800	ND	ND<100					
T-10C		Jan-90	ND<100	15,000			ND<100	ND<100	ND<100			ND	ND	ND	1,600	ND	ND<100					
T-10C		Jan-90	ND<20	15,000			ND<20	ND<20	ND<90			ND	ND	ND	1,600	ND	ND<20	ND				
T-10C		Apr-90	ND<100	11,000			ND<100	ND<100	ND<100			ND	ND	ND	670		ND<100	l				
1 100		7bi-90	1 140 - 100	11,000		·	145,100	145,100	1 100 100	140 - 100	1 100 100	שייו	ן יאט	שויו		NU	1,40,100	שאו	<u> </u>	I		

										·	Ţ	·		7			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
T-10C		Apr-90	ND<100	11,000			ND<100	ND<100	ND<100	ND<100	ND<100	ND	ND	ND	600	ND	ND<100	ND				
T-10C		Apr-90	ND<25	7,500			ND<25	ND<50	55	45	ND<25	ND	ND	ND	1,100	ND	ND<25	ND				
T-10C		Jul-90	ND<20	4,600			ND<20	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	490	ND	ND<20	ND				
T-10C		Jul-90	ND<200	6,800			ND<200	ND<400	ND<200	ND<200	ND<200	ND	ND	ND	860	ND	ND<200	ND				
T-10C		Oct-90	ND<20	4,200			ND<20	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	550	ND	ND<20	ND				
T-10C		Jan-91	ND<20	4,100			ND<20	ND<20	ND<20	40	ND<20	ND	ND	ND	150	ND	ND<20	ND				
T-10C		Jan-91	ND<20	4,000			ND<20	ND<20	ND<20	70	ND<20	ND	ND	ND	160	ND	ND<20	ND				
T-10C		Jan-91	ND<25	3,000			ND<25	ND<50	27	41	ND<25	ND	ND	ND	270	ND	ND<25	ND				
T-10C		Apr-91	ND<50	5,200			ND<50	ND<50	ND<50	ND<50	ND<50	ND	ND	ND	340	ND	ND<50	ND				
T-10C		Apr-91	ND<50	3,500			ND<50	ND<50	ND<50	ND<50	ND<50	ND	ND	ND	210	ND	ND<50	ND				
T-10C		Apr-91	1	2,200			5.5	ND<1.0	6.0	16	1.4	ND	ND	ND	170	ND	ND<0.5	ND				
T-10C		Jul-91	ND<50	7,000			ND<50	ND<50	ND<50	ND<50	ND<50	ND	ND	ND	220	ND	ND<50	ND				
T-10C		Jul-91	ND<50	6,800			ND<50	ND<50	ND<50	ND<50	ND<50	ND	ND	ND	360	ND	ND<50	ND				
T-10C		Jul-91	ND<50	5,400			ND<50	ND<100	ND<50	ND<50	ND<50	ND	ND	ND	200	ND	ND<50	ND				
T-10C		Oct-91	ND<50	5,900			ND<50	ND<50	ND<50	ND<50	ND<50	ND	ND	ND	ND<50	ND	ND<50	ND				
T-10C		Oct-91	ND<20	2,700			ND<20	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	110	ND	ND<20	ND				
T-10C		Oct-91	ND<10	4,100			ND<10	ND<20	ND<10	ND<10	ND<10	ND	ND	ND	180	ND	ND<10	ND				
T-10C		Jan-92	ND<30	2,900			ND<30	ND<30	ND<30	ND<30	ND<30	ND	ND	ND	90	ND	ND<30	ND				
T-10C		Apr-92	ND<20	4,400			ND<20	ND<20	ND<20	ND<20	ND<20	ND	ND	ND	ND<20	ND	ND<20	ND				
T-10C		Apr-92	3.0	2,300			6.5	ND<0.5	4.5	79	0.6	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-10C		Oct-92	ND<0.5	250			0.8	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND				
T-10C		Oct-92	ND<0.5	290			0.9	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND				
T-10C		Oct-92	ND<0.5	97			1.1	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	8.3	ND	ND<0.5	ND				
T-10C		Oct-93	ND<0.5	260			0.9	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-10C		Oct-94	ND<25	200			ND<25	ND<25	ND<25	ND<25	ND<25	ND	ND	ND	ND<25	ND	ND<25	ND				
T-10C		Oct-95	ND<1.0	38			3.2	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-10C		Oct-96	ND<0.5	46	1.6	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	0.8	ND	ND<0.5	ND				
T-10C		Oct-97	ND<2.5	57	ND<2.5	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND	ND	ND	ND<2.5	ND	ND<5.0	ND				
T-10C		Oct-98	ND<5.0	130	12	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	9.7	ND	ND<5.0	ND				
T-10C		Oct-99	ND<2.0	110	20	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND	ND	ND	11	ND	ND<2.0	ND				
T-10C		Oct-00	ND<40	440	58	ND<40		ND<40	ND<40	ND<40	ND<40	ND<40	ND	ND	ND<40	ND	ND<40	ND<40				
T-10C		Oct-01	ND<50	1,600	180	ND<50		ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	100	780	ND<200	ND<50	ND<50				
T-10C		Oct-02	ND<2.5	390	18	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<5.0	61	ND<10	ND<2.5	ND<2.5				
T-10C		Oct-03	ND<5.0	290	9.8	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<10	40	ND<20	ND<5.0	ND<5.0				
T-10C		Oct-04	ND<2.0	270	10	ND<2.0		ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<4.0	39	ND<8.0	ND<2.0	ND<2.0				
T-10C		Oct-05	ND<5.0	710	28	ND<5.0		ND<5.0		1	ND<5.0			ND<10	110	ND<5.0						
T-10C		Oct-06	ND<2.5	340	14	ND<2.5		ND<2.5		ND<2.5	ND<2.5			ND<5.0	70			ND<2.5				
T-10C		Oct-07	2.5	4,500	100	6.5		6.8	ND<2.5	7.1	ND<2.5	ND<2.5		ND<2.5	570	l		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0
T-10C		Oct-08	ND<50	1,900	68	ND<50		ND<50	ND<50	ND<50	ND<50	1	ND<100	ND<50	450		1	ND<50	ND<50		ND<50	ND<100
T-10C		Oct-09	ND<0.50	3.0	350	4.0		14	ND<0.50			ND<0.50		ND<0.50	-					ND<0.50		
T-10C		Oct-10	ND<0.50	790	61	2.2		2.5	ND<0.50		<u> </u>	ND<0.50		ND<0.50	1					ND<0.50		ND<1.0
T-10C		Oct-11	ND<5.0	890	88	ND<5.0		ND<5.0		ND<5.0	<u> </u>	ND<5.0		ND<5.0	160		.	ND<5.0		ND<5.0	ND<5.0	ND<10
T-10C		Oct-12	ND<5.0	1,200	83			ND<5.0		ND<5.0		ND<5.0		ND<5.0	160	l	}	ND<5.0	ND<5.0		ND<5.0	ND<10
T-10C		Oct-13	ND<10	1100	58	ND<10		ND<10	ND<10	ND<10	ND<10		ND<20	ND<10	170	ND<20	 	ND<10				
T-10C		Oct-14	ND<10	1300	76	ND<10		ND<10	ND<10	ND<10	ND<10	ND<10	ND<20	ND<10	170	ND<20	ND<10					
T-10C		Jun-15	ND<0.50	690	1500	14		7.2	ND<0.50			ND<0.50		20	190			ND<0.50				
T-10C		Oct-15	ND<25	32	1600	ND<25		ND<25	ND<25	ND<25	ND<25	ND<25	ND<50	ND<25	32	ND<50	ND<25					
T-10C		May-16	ND<10	71	980	ND<10		19	ND<10	ND<10	ND<10		ND<20	ND<10	95	ND<20	ND<10					
T-10C		Oct-16	ND<10	ND<10	730	ND<10		41	ND<10	ND<10	ND<10	ND<10	ND<20	ND<10	90	ND<20	ND<10	ND<10				
T-10C		Oct-17	ND<25	740	650	ND<25		ND<25	ND<25	ND<25	ND<25		ND<50	ND<25	140	ND<50	ND<25					
T-10C		Oct-18	ND<25	260	890	ND<25		38	ND<25	ND<25	ND<25	ND<25	ND<50	ND<25	140	l	ND<25					
1 100	LL	O01-10	140,50	200		140 -20			110 720	1110 720	110,50	110,50	140 700	L 1412 720	1-70	140,00	1110,50	110,50	L	L		Lل

T 440 (700)		Lil 00	I ND-4.0 I	4 000	<u> </u>		ND-40	I ND-4 0	0.7	2.0	ND 44 0	T T	T ND		740	ND I	NID < 4.0					
T-11C (ZB2)		Jul-86	ND<1.0	1,800	-		ND<1.0	ND<1.0	9.7	3.2 ND<25	ND<1.0		ND		710	ND	ND<1.0					
T-11C		Jul-86	ND<25	4,600			ND<25	ND<25	ND<25	ND<25	ND<25		ND		2,000	ND	ND<25					
T-11C		Sep-86	62 ND <10	3,100			ND<25	ND<25	ND<25	ND<25	ND<25		ND		660	ND	ND<25					
T-11C		Jan-87	ND<10	2,200			ND<10	ND<10	ND<10	ND<10	ND<10		ND		260	ND	ND<10					
T-11C		Apr-87	11	1,600			87 ND 440	ND<10	ND<10	12	ND<10		ND		210	ND	ND<10					
T-11C		Jun-87	ND<10	2,900			ND<10	ND<10	ND<10	ND<10	ND<10		ND		230	ND	ND<10					
T-11C		Oct-87	ND<10	1,900			ND<10	ND<10	ND<10	ND<10	ND<10		ND		140	ND	ND<10					
T-11C		Jan-88	ND<25	2,200			ND<25	ND<25	ND<25	ND<25	ND<25		ND		430	ND	ND<25					
T-11C		May-88	ND<5.0	1,100			40	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND		120	ND	ND<5.0					
T-11C		Aug-88	ND<25	1,800			87	ND<25	ND<25	ND<25	ND<25		ND		230	ND	ND<25					
T-11C		Nov-88	ND<10	740			ND<10	ND<10	ND<10	ND<10	ND<10		ND		100	ND	ND<10					
T-11C		Feb-89	ND<25	780			ND<25	ND<25	ND<25	ND<25	ND<25		ND		42	ND	ND<25					
T-11C		May-89	ND<2.5	560			23	ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND		49	ND	ND<2.5					
T-11C		Aug-89	ND<2.0	680			72	ND<2.0	ND<2.0	ND<2.0	ND<2.0		ND		47	ND	ND<2.0					
T-11C		Oct-89	ND<1.0	500			40	ND<1.0		ND<1.0			ND		70	ND	ND<1.0					
T-11C		Jan-90	ND<2.0	410			5.0	ND<2.0			ND<2.0	ND	ND	ND	15	ND	ND<2.0	ND				
T-11C		Apr-90	ND<5.0	570			ND<5.0	ND<5.0		ND<5.0		ND	ND	ND	13	ND	ND<5.0	ND				
T-11C		Jul-90	ND<5.0	330	-		ND<5.0	ND<5.0		ND<5.0		ND	ND	ND	7.0	ND	ND<5.0	ND				
T-11C		Oct-90	ND<2.0	330	-		16	ND<2.0		ND<2.0	ND<2.0	ND	ND	ND	16	ND	ND<2.0	ND				
T-11C		Jan-91	ND<2.0	290			4.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND	ND	ND	10	ND	ND<2.0	ND				
T-11C		Apr-91	ND<2.0	270			ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND	ND	ND	18	ND	ND<2.0	ND				
T-11C		Jul-91	ND<2.0	800			ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND	ND	ND	42	ND	ND<2.0	ND				
T-11C		Oct-91	ND<5.0	960			ND<5.0	ND<5.0		ND<5.0	ND<5.0	ND	ND	ND	28	ND	ND<5.0	ND				
T-11C		Jan-92	ND<5.0	1,000			ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	67	ND	ND<5.0	ND				
T-11C		Apr-92	ND<10	1,500			ND<10	ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND				
T-11C		Oct-92	ND<0.5	150			9.3	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND				
T-11C		Oct-93	ND<0.5	210			2.3	ND<1.0		ND<0.5		ND	ND	ND	7.5	ND	ND<0.5	ND				
T-11C		Oct-94	ND<5.0	110			ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-11C		Oct-95	ND<1.0	54			ND<1.0	ND<2.0		ND<1.0		ND	ND	ND	2.1	ND	ND<1.0	ND				
T-11C		Oct-96	ND<0.5	37	ND<0.5	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	1.0	ND	ND<0.5	ND				
T-11C		Oct-97	ND<1.0	36	2.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<2.0	ND				
T-11C		Oct-98	ND<10	270	ND<10	ND<10		ND<10	ND<10	ND<10	ND<10	ND	ND	ND	ND<10	ND	ND<10	ND				
T-11C	Dup	Oct-98	ND<2.0	160	ND<2.0	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND	ND	ND	4.4	ND	ND<2.0	ND				
T-11C		Oct-99	ND<5.0	290	ND<5.0	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-11C		Oct-00	ND<30	320	ND<30	ND<30		ND<30	ND<30	ND<30	ND<30	ND<30	ND	ND	ND<30	ND	ND<30	ND<30				
T-11C		Oct-01	ND<5.0	300	5.7	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<5.0	10	ND<5.0	ND<5.0	ND<5.0				
T-11C		Oct-02	ND<2.5	63	2.6	ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<5.0	ND<2.5	ND<10	ND<2.5	ND<2.5				
T-11C		Oct-03	ND<0.5	17	0.53	ND<0.5		ND<0.5			ND<0.5				ND<0.5	ND<2.0						
T-11C		Oct-04	ND<0.5	27	1.2	ND<0.5		ND<0.5					ND<1.0		ND<0.5	ND<2.0	ND<0.5	ND<0.5				
T-11C		Oct-05	ND<0.5	28	1.6	ND<0.5		ND<0.5					ND<0.5	ND<1.0	0.8	ND<0.5						
T-11C		Oct-06	ND<2.5	330	22	ND<2.5		11			ND<2.5			ND<5.0	13	ND<2.5						
T-11C		Oct-07	ND<2.5	290	20	ND<2.5		11			ND<2.5			ND<2.5	14			ND<2.5		ND<2.5	ND<2.5	ND<5.0
T-11C		Oct-08	ND<0.5	18	1.2	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<0.5	0.60	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1
T-11C		Oct-09	ND<0.50	1.7	3.9	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-11C		Oct-10	ND<0.50	250	16	ND<0.50		3.7	ND<0.50		ND<0.50			ND<0.50		ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
T-11C		Oct-11	ND<2.5	310	22	ND<2.5		6.4	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0	ND<2.5	16	ND<5.0	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<5.0
T-11C		Oct-12	ND<2.5	290	26	ND<2.5		5.2				1	ND<5.0		17	ND<5.0				ND<2.5	ND<2.5	ND<5.0
T-11C		Oct-13	ND<2.5	460	35	0.68 J		4.8	ND<2.5		ND<2.5			ND<2.5	22	ND<5.0						
T-11C		Oct-14	ND<2.5	310	23	ND<2.5		3.6					ND<5.0		15	ND<5.0						
T-11C		Oct-15	ND<0.50	43	3.3	ND<0.50		.	ND<0.50							ND<1.0						
T-11C		Oct-16	ND<0.50	3	ND<0.50	ND<0.50							ND<1.0									

T 440		I 0.1.47	ND -0 50	040 11	00	0.04		1 00	ND 40 50 I		LND 40 50		L NID 44.0	LND 40 50	40	ND 44.0	ND -0 50	LND -0 50				
T-11C		Oct-17	ND<0.50	310 H	26	0.84		2.8	ND<0.50	2.2	ND<0.50		1	ND<0.50	10		1	ND<0.50				
T-11C		Oct-18	ND<0.50	150	13	ND<0.50		 	ND<0.50	~~~~	ND<0.50		 	ND<0.50	 	ND<1.0	 					
T-12C (ZB2)		Aug-89	ND<2.0	350			ND<2.0	ND<2.0		ND<2.0	ND<2.0		ND		17	ND	ND<2.0					
T-12C		Aug-89	ND<10	260			ND<10	ND<20		ND<10	ND<10		ND		47	ND						
T-12C		Oct-89	ND<2.0	410			ND<2.0	ND<2.0		ND<2.0			ND		17	ND ND	ND<2.0					
T-12C		Jan-90	ND<2.0	440			ND<2.0	ND<2.0		ND<2.0		ND	ND	ND	21	ND	ND<2.0	ND				
T-12C		Apr-90	ND<2.0	390			ND<2.0	ND<2.0		ND<2.0	ND<2.0	ND	ND	ND	9.0	ND	ND<2.0	ND				
T-12C		Jul-90	ND<2.0	460			ND<2.0	ND<2.0		ND<2.0	ND<2.0	ND	ND	ND	13	ND ND	ND<2.0	ND				
T-12C		Oct-90	ND<2.0	350			2.0	ND<2.0		ND<2.0	ND<2.0	ND	ND	ND	14	ND	ND<2.0	ND				
T-12C		Jan-91	ND<2.0	290			ND<2.0	ND<2.0		ND<2.0	ND<2.0	ND	ND	ND	4.0	ND	ND<2.0	ND				
T-12C		Apr-91	ND<2.0	290			6.0	ND<2.0	l	ND<2.0		ND	ND	ND	7.0	ND ND	ND<2.0	ND				
T-12C		Jul-91	ND<1.0	240			19	ND<1.0		ND<1.0		ND	ND	ND	16	ND	ND<1.0	ND				
T-12C		Oct-91	ND<1.0	250			10	ND<1.0			ND<1.0	ND	ND	ND	11	ND ND	ND<1.0	ND				
T-12C		Jan-92	ND<3.0	410			ND<3.0	ND<3.0		ND<3.0		ND	ND	ND	10 ND 40 0	ND ND	ND<3.0	ND				
T-12C		Apr-92	ND<2.0	430			ND<2.0	ND<2.0		ND<2.0		ND	ND	ND	ND<2.0	ND	ND<2.0	ND				
T-12C		Oct-92	ND<0.5	130			2.0	ND<1.0	ND<0.5			ND	ND	ND		ND ND	ND<0.5	ND				
T-12C		Oct-93	ND<5.0	210			ND<5.0	ND<10	1		ND<5.0	ND	ND	ND	6.0	ND_	ND<5.0	ND				
T-12C		Oct-94	ND<5.0	130			ND<5.0 110	ND<5.0			ND<5.0	ND	ND	ND	ND<5.0	ND	ND<5.0	ND				
T-12C		Oct-95	ND<1.0	100		 ND -0 E		5.7		ND<1.0		ND	ND	ND	5.7	ND	ND<1.0	ND				
T-12C		Oct-96	ND<0.5	120	2.4	ND<0.5		ND<0.5		ND<0.5		ND	ND	ND	2.8	ND	ND<0.5	ND				
T-12C		Oct-97	ND<2.5	150	ND<2.5	ND<2.5		ND<2.5		ND<2.5	ND<2.5	ND	ND	ND	ND<2.5	ND	ND<5.0	ND				
T-12C	D	Oct-98	ND<5.0	140	ND<5.0	ND<5.0		ND<5.0		ND<5.0	ND<5.0	ND	ND	ND	ND<5.0	ND ND	ND<5.0	ND				
T-12C	Dup	Oct-98	ND<2.0	110	5.6	ND<2.0		ND<2.0	1	ND<2.0	ND<2.0	ND	ND	ND	2.2	ND	ND<2.0	ND				
T-12C		Oct-99	ND<2.0	130	18	ND<2.0		2.6	1	ND<2.0	ND<2.0	ND 440	ND	ND	2.7	ND	ND<2.0	ND ND 440				
T-12C		Oct-00	ND<10	160	14	ND<10		ND<10	1	ND<10	ND<10	ND<10	ND ND	ND ND	ND<10	ND	ND<10	ND<10				
T-12C		Oct-01	ND<5.0	150	14	ND<5.0		ND<5.0	1 1	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10	ND<20	ND<20	ND<5.0	ND<5.0				
T-12C		Oct-02	ND<1.0	180	17	1.4		1.9	ND<1.0	1.7	ND<1.0	ND<1.0	ND<2.0	ND<2.0	2.6		ND<1.0	ND<1.0				
T-12C		Oct-03	ND<5.0	210	61	ND<5.0		6.2		ND<5.0		ND<5.0		ND<10	7.8	ND<20	ND<5.0					
T-12C		Oct-04	ND<2.0	240	50	ND<2.0		4.2	l	ND<2.0		ND<2.0	1	ND<4.0	7.6		ND<2.0					
T-12C		Oct-05	ND<2.0	180	39	ND<2.0		4.3		ND<2.0		ND<2.0	L	ND<4.0	5.4		ND<2.0					
T-12C		Oct-06	ND<2.0	210	37 19	ND<2.0		3.1 ND<2.0	l	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<4.0	5.7		ND<2.0		ND<0.0	ND<2.0	ND<0.0	 ND<4.0
T-12C		Oct-07	ND<2.0	210		ND<2.0		ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<4.0	ND<2.0	5.2	ND<2.0	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<4.0
T-12C		Oct-08	ND<2	170	65 53	ND<2		4.7	ND<2	ND<2	ND<2	ND<2	ND<4	ND<2	3.7	ND<4	ND<2	ND<2	ND<2	ND<2	ND<2	ND<4
T-12C T-12C		Oct-09	ND<0.50	170	53	1.2		3.8	ND<0.50 ND<0.50		ND<0.50			ND<0.50				ND<0.50			ND<0.50 ND<0.50	ND<1.0
1		Oct-10		6.3	4.2	ND<0.50 ND<0.50			ND<0.50													
T-12C T-12C		Oct-11 Oct-12	ND<0.50 ND<0.50	7.6 9.3	8.7 11	ND<0.50			ND<0.50													
T-12C		Oct-12	ND<0.50	140	85	1.5		4.7	ND<0.50		ND<0.50			0.23 J	2.7			ND<0.50				140-1.0
T-12C		Oct-14	ND<0.30	140	5.1	ND<1.0		ł	ND<0.30					ND<1.0			1	ND<0.50				
T-12C		Oct-14	ND<1.0	2	13	ND<1.0			ND<0.50								S	ND<0.50				
T-12C		Oct-16	ND<0.50	ND<0.50	4.7	ND<0.50			ND<0.50						1		1	ND<0.50				
T-12C		Oct-17	ND<0.50	140	6.3	0.86			ND<0.50		ND<0.50			ND<0.50				ND<0.50				
T-12C		Oct-17	ND<0.50	99	36	0.80			ND<0.50					ND<0.50				ND<0.50				
36DD (ZB2)		Apr-83	20	18			2	ND ND	18	ND	ND ND		ND ND		ND	ND ND	ND ND					
36DD (2B2)		May-83	ND	990			120	ND	ND ND	ND	ND		ND		ND ND	ND ND	ND					
36DD		Aug-83	ND<1.0	12			1.7	ND		ND<1.0	ND<1.0		ND		ND<1.0	ND	ND					
36DD		Mar-84		11									ND			ND ND						
36DD		Nov-84	ND<0.5	5.1			6.3		ND<0.5				ND			ND						
36DD		Oct-85	ND<0.5	8.6			17	ND<0.5	ND<0.5				ND		ND<0.5	ND ND	ND<0.5					
36DD		Jan-86	ND<0.5	31			24	ND<0.5					ND			ND	ND<0.5					
36DD		Apr-86	ND<0.5	27			2.4		ND<0.5				ND		ND<0.5		ND<0.5					
3000		1 Vhi-00	ND~0.5	۷.۱			۷.٦	טייטיון	140-0.3	14D-0.5	1.0		ן ואט	L	140-0.5	עאו	140-0.3					

-	 												7				 ~~~~	
36DD	Jul-86	ND<0.5	27			22	ND<0.5		ND<0.5	ND<0.5		ND		ND<0.5	ND	ND<0.5	 	
36DD	Sep-86	ND<0.5	20			23	ND<0.5		ND<0.5	1.8		ND		ND<0.5	ND	ND<0.5	 	
36DD	Jan-87	ND<0.5	26			16	ND<0.5	ND<0.5	ND<0.5	2.3		ND		ND<0.5	ND	ND<0.5	 	
36DD	Apr-87	ND<0.5	53			45	ND<0.5	2.8	1.3	2.2		ND		ND<0.5	ND	ND<0.5	 	
36DD	Jun-87	ND<0.5	32			38	ND<0.5	ND<0.5	ND<0.5	1.8		ND		ND<0.5	ND	ND<0.5	 	
36DD	Oct-87	ND<0.5	40			30	ND<0.5	1.4	0.7	3.0		ND		ND<0.5	ND	ND<0.5	 	
36DD	Jan-88	ND<0.5	38			25	ND<0.5	1.0	ND<0.5	3.4		ND		1.9	ND	ND<0.5	 	
36DD	May-88	ND<0.5	68			40	ND<0.5	1.5	1.6	5.0		ND		2.6	ND	ND<0.5	 	
36DD	Aug-88	ND<1.0	72			43	ND<1.0	1.6	1.4	3.7		ND		4.7	ND	ND<1.0	 	
36DD	Nov-88	ND<5.0	85			25	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND		ND<5.0	ND	ND<5.0	 	
36DD	Feb-89	ND<5.0	72			16	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND		ND<5.0	ND	ND<5.0	 	
36DD	May-89	ND<0.5	68			18	ND<0.5	1.1	1	2		ND		ND<0.5	ND	ND<0.5	 	
36DD	Aug-89	ND<0.5	70			21	ND<0.5	ND<0.5	1.5	3.1		ND		ND<0.5	ND	ND<0.5	 	
36DD	Oct-89	ND<0.5	62			13	ND<0.5	ND<0.5	0.5	1.5		ND		ND<0.5	ND	ND<0.5	 	
36DD	Jan-90	ND<0.5	57			20	ND<0.5	ND<0.5	ND<0.5	0.7	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Apr-90	ND<0.5	35			15	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Jul-90	ND<0.5	28			14	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Oct-90	ND<0.5	1,100			16	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Jan-91	ND<0.5	26			16	ND<0.5	ND<0.5	ND<0.5	0.6	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Apr-91	ND<0.5	27			18	ND<0.5	ND<0.5	ND<0.5	0.6	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Jul-91	ND<0.5	29			22	ND<0.5	ND<0.5	ND<0.5	0.8	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Oct-91	ND<0.5	36			21	ND<0.5	ND<0.5	ND<0.5	0.8	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Jan-92	ND<0.5	37			23	ND<0.5	ND<0.5	ND<0.5	0.9	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Apr-92	ND<0.5	45			11	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Oct-92	ND<0.5	29			5.8	ND<0.3	ND<0.5	ND<0.5	0.6	ND	ND	ND		ND	ND<0.5 ND		
		1	ŧ											ND < 0.5				
36DD	Oct-93	ND<0.5	38			8.7	ND<1.0	ND<0.5	ND<0.5	0.6	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Oct-94	ND<0.5	58			12	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Oct-95	ND<1.0	42			15.1	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0 ND	 	
36DD	Oct-96	ND<0.5	22	29	1.4		ND<0.5	ND<0.5	ND<0.5	0.5	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Oct-97+	ND<0.5	13	49	1.1		ND<0.5	ND<0.5	0.5	0.7	ND	ND	ND	ND<0.5	ND	ND<0.5 ND	 	
36DD	Apr-98+	ND<1.2	11	42	ND<1.2		ND<1.2		ND<1.2	ND<1.2	ND	ND	ND	ND<5.0	ND	ND<1.2 ND	 	
36DD	Oct-99	ND<1.0	10	77	1.2		ND<1.0	ND<1.0	ND<1.0	1.0	ND	ND	ND	ND<1.0	ND	ND<1.0 ND	 	
36DD	Oct-00+	ND<0.5	6.4	100	1.4		ND<1.0	ND<0.5	ND<0.5	1.0	ND	ND	ND	ND<1.0	ND	ND<0.5 ND	 	
36DD	Oct-01+	ND<0.5	11	110	1.6		ND<0.5	ND<0.5	0.8	1.1	ND	ND	ND	ND<1.0	ND	ND<0.5 ND	 	
36DD	Oct-02+	ND<0.5	8.1	130	2.2		1.3	ND<0.5	0.7	1.0	ND	ND	ND	ND<1.0	ND	ND<0.5 ND	 	
36DD	Oct-03+	ND<0.5	1.2	29	1.9		4.6	ND<0.5		ND<0.5	ND	ND	ND	ND<1.0	ND	ND<0.5 ND	 	
36DD	Oct-04+	ND<0.5	0.5	31	2.2		4.5		ND<0.5	0.5	ND	ND	ND	ND<1.0	ND	ND<0.5 ND	 	
36DD	Oct-05+	ND<0.5	ND<0.5	73	2.5		12	ND<0.5	0.5	0.7	ND	ND	ND	ND<1.0	ND	ND<0.5 ND	 	
36DD	Oct-06+	ND<0.5	0.8	22	1.2		6.2		ND<0.5	0.5	ND	ND	ND	ND<0.5	ND	ND<0.5 ND<0.5	 	
36DD	Oct-07+	ND<0.5	1.5	22	0.8		3.6		ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5 ND<0.5	 	
36DD	Oct-08+	ND<0.5	1.6	24	1.1		1.6		ND<0.5	ND<0.5				ND<2.0		ND<0.5	 	
36DD	Oct-09+	ND<0.5	1.3	35	1.8		2.5		ND<0.5	ND<0.5				ND<2.0		ND<0.5	 	
36DD	Oct-10+	ND<0.5	ND<0.5	14	0.7		2.2	ND<0.5	ND<0.5	ND<0.5				ND<2.0		ND<0.5	 	
36DD	Oct-11	ND<0.5	2.6	10	1.9		5.5		ND<0.5	ND<0.5				ND<2.0		ND<0.5	 	
36DD	Oct-12	ND<0.5	3.2	24	1.8		3.3		ND<0.5	ND<0.5				ND<2.0		ND<0.5	 	
36DD	Oct-13	ND<0.5	ND<0.5	11	0.9		1.3		ND<0.5	ND<0.5				ND<2.0		ND<0.5	 	
36DD	Oct-14	ND<0.5	ND<0.5	7.1	1.0		ND<0.5		ND<0.5	ND<0.5				ND<2.0		ND<0.5	 	
36DD	Oct-15	ND<0.5	ND<0.5	5.7	1.1		1.7		ND<0.50	ND<0.50				ND<0.2	an an	ND<0.50	 	
36DD	Oct-16	ND<0.50	ND<0.50	1.8	1.4		7.3			ND<0.50				ND<0.50		ND<0.50	 	
T-9C (ZB3)	 Jan-85	ND<0.5	ND<0.5			ND<0.5		ND<0.5						ND<0.5	ND		 	
T-9C	Oct-85	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5				ND<0.5	ND	ND<0.5	 	
																1		U

T-9C		Jan-86	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5					ND	ND<0.5					
T-9C		Apr-86	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5				ND<0.5	ND	ND<0.5					
T-9C		Jul-86	ND<0.5	9.2			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5				32	ND	ND<0.5					
T-9C		Jan-88	ND<5.0	330			ND<5.0	ND<5.0	7.5	ND<5.0	ND<5.0				280	ND	ND<5.0					
T-9C		May-88	ND<2.5	470			ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5				160	ND	ND<2.5					
T-9C		Aug-89	ND<1.0	190			1	ND<1.0	ND<1.0	ND<1.0	ND<1.0				33	ND	ND<1.0					
T-9C		Oct-90	ND<0.5	81			ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	9.0	ND	ND<0.5	ND				
T-9C		Oct-90	ND<0.5	73			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	9.8	ND	ND<0.5	ND				
T-9C		Oct-91	ND<0.5	51			1	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	18	ND	ND<0.5	ND				
T-9C		Oct-92	ND<0.5	8			ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND				
T-9C		Oct-93	ND<0.5	66			13	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	4.9	ND	ND<0.5	ND				
T-9C		Oct-94	ND<0.5	12			2	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-9C		Oct-95	ND<1.0	8.6			1.8	ND<2.0		ND<1.0		ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-9C		Oct-96	ND<0.5	25	3.8	ND<0.5		ND<0.5	l	ND<0.5		ND	ND	ND	ND<0.5	ND	ND<0.5	ND				
T-9C		Oct-97	ND<0.5	2.9	0.9	ND<0.5		ND<0.5		ND<0.5		ND	ND	ND	ND<0.5	ND	ND<1.0	ND				
T-9C		Oct-98	ND<1.0	2.4	ND<1.0	ND<1.0		ND<1.0	l	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-9C	Dup	Oct-99	ND<1.0	4.0	1.7	ND<1.0		ND<1.0	ND<1.0			ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-9C	246	Oct-99	ND<1.0	3.9	1.9	ND<1.0		ND<1.0	ND<1.0			ND	ND	ND	ND<1.0	ND	ND<1.0	ND				
T-9C		Oct-00	ND<3.0	66	43	ND<1.0		ND<3.0	l	ND<3.0		ND<3.0	ND	ND	ND<1.0	ND	ND<1.0	ND<3.0				
T-9C		Oct-00	ND<5.0	94	65	ND<5.0		ND<5.0	l	ND<5.0		ND<5.0	ND<10	ND<5.0	ND<3.0		ND<5.0	ND<5.0				
T-9C		Oct-02	ND<0.5	3.1	2.4	ND<0.5		ND<0.5			ND<0.5	ND<0.5	l	ND<1.0	ND<0.5		ND<0.5	ND<0.5				
T-9C		Oct-03	ND<2.5	83	59	ND<2.5		ND<2.5	ND<2.5				ND<5.0		ND<2.5		l					
T-9C		Oct-04	ND<0.5	6.1	2.9	ND<0.5		ND<0.5			ND<0.5		1		ND<1.0		ND<0.5					
T-9C		Oct-05	ND<0.5	1.7	1.4	ND<0.5		ND<0.5	ND<0.5				ND<1.6		ND<1.0		!	ND<0.5				
T-9C		Oct-06	ND<0.5	0.88	0.54	ND<0.5		ND<0.5		ND<0.5	ND<0.5	ND<0.5	1		ND<0.5 ND<0.5			ND<0.5				
T-9C		Oct-07	ND<0.5	88	36			1.6	ND<0.5	1.7	ND<0.5	ND<0.5		ND<1.0	1.1				ND<0.5	ND<0.5	ND<0.5	ND<1.0
T-9C				43	17	1.4		l	l	0.82	ND<0.5	ND<0.5	l	ND<0.5	-	ND<1.0	.		ND<0.5	ND<0.5	ND<0.5	.
		Oct-08 Oct-09	ND<0.5 ND<0.50	78	57	0.6 2.2		0.66 2.8	ND<0.5 ND<0.50		ND<0.50		1	ND<0.50	ND<0.5 0.63		!			ND<0.50		ND<1 ND<1.0
T-9C		Oct-09	ND<0.50			ND<0.50			ND<0.50												ND<0.50	
T-9C				0.98	2.1			l					1				l					
T-9C		Oct-11	ND<0.50	ND<0.50	ND<0.50	ND<0.50		l	ND<0.50				1				.			ND<0.50		
T-9C		Oct-12	ND<0.50	5	3.7	ND<0.50			ND<0.50				1							ND<0.50		ND<1.0
T-9C		Oct-13	ND<0.50	ND<0.50	0.36 J	ND<0.50			ND<0.50				<u> </u>	ND<0.50		ND<1.0						
T-9C		Oct-14	ND<0.50	ND<0.50	0.54	ND<0.50			ND<0.50							ND<1.0	.					
T-9C		Oct-15	ND<0.50	0.52	ND<0.50	ND<0.50			ND<0.50							ND<1.0						
T-9C		Oct-16	ND<0.50	ND<0.50	ND<0.50	ND<0.50			ND<0.50													
T-9C		Oct-17	ND<0.50	ND<0.50	ND<0.50				ND<0.50					ND<0.50								
T-9C		Oct-18	ND<0.50	ND<0.50	ND<0.50	ND<0.50		 	ND<0.50			ND<0.50	 	<u> </u>		ND<1.0	 					
T-8D (ZB4)		Dec-84	ND<0.5	ND<0.5			ND<0.5		ND<0.5				ND	ND	ND<0.5	ND						
T-8D		Oct-85	ND<0.5	1.1			ND<0.5	ND<0.5					ND	ND	55		ND<0.5					
T-8D		Jan-86	ND<0.5	ND<0.5			ND<0.5	ND<0.5					ND	ND			ND<0.5					
T-8D		Apr-86	ND<0.5	ND<0.5			ND<0.5	ND<0.5					ND	ND	ND<0.5	ND	ND<0.5					
T-8D		Jul-86	ND<0.5	ND<0.5			ND<0.5	ND<0.5					ND	ND	ND<0.5	ND	ND<0.5					
T-8D		Sep-86	ND<0.5	2.3			ND<0.5	ND<0.5					ND	ND	ND<0.5	ND	ND<0.5					
T-8D		Oct-87	ND<0.5	ND<0.5			ND<0.5	ND<0.5					ND	ND	ND<0.5	ND	ND<0.5					
T-8D		Jan-88	ND<0.5	ND<0.5			ND<0.5	ND<0.5					ND	ND	ND<0.5	ND	ND<0.5					
T-8D		May-88	ND<0.5	0.6			ND<0.5	ND<0.5					ND	ND	ND<0.5	ND	ND<0.5					
T-8D		Aug-88	ND<0.5	ND<0.5			ND<0.5	ND<0.5					ND	ND	ND<0.5	ND	ND<0.5					
T-8D		Nov-88	ND<0.5	ND<0.5			ND<0.5	ND<0.5					ND	ND	ND<0.5	ND	ND<0.5					
T-8D		Feb-89	ND<0.5	ND<0.5			ND<0.5	ND<0.5					ND	ND	ND<0.5	ND	ND<0.5					
T-8D		May-89	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5				ND	ND	ND<0.5	ND	ND<0.5					
T-8D		Aug-89	ND<1.0	ND<1.0			ND<1.0	ND<1.0	ND<1.0	ND<1.0	I ND<10		ND	ND	ND<1.0	ND	ND<1.0					

T-8D	Oct-89	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND	ND	ND<0.5	ND	ND<0.5		 	
T-8D	Jan-90	ND<0.5	ND<0.5			ND<0.5	ND<0.5		ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Apr-90	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Jul-90	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Oct-90	ND<0.5	ND<0.5			ND<0.5	ND<0.5		ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Jan-91	ND<0.5	ND<0.5			ND<0.5	ND<0.5		ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Apr-91	ND<0.5	ND<0.5			ND<0.5	ND<0.5		ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	- Jul-91	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Oct-91	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Jan-92	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Apr-92	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Oct-92	ND<0.5	ND<0.5			ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Apr-93	ND<0.5	ND<0.5			ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND		ND	ND<0.5	ND	 	
T-8D	Oct-93	ND<0.5	ND<0.5			ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Apr-94	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Oct-94	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Oct-95	ND<1.0	ND<1.0			ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND	 	
T-8D	Apr-96	ND<0.5	ND<0.5			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Oct-96	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Apr-97	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<0.5	ND	 	
T-8D	Oct-97	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<0.5	ND	ND<1.0	ND	 	
T-8D	Apr-98	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND	ND	ND<2.0	ND	ND<0.5	ND	 	
T-8D	Oct-98	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND	 	
T-8D	Apr-99	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND	 	
T-8D	Oct-99	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND	ND	ND	ND<1.0	ND	ND<1.0	ND	 	
T-8D	Oct-00	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND	ND	ND<1.0	ND	ND<1.0		 	
T-8D	Oct-01	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND<0.5		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<2.0	ND<0.5	ND<0.5	 	
		Per Water E	Board approva	ıl, groundwat	er sampling	of well T-8D	was suspe	nded in 20	02.										

Notes:

mum Contaminant Levels (MCLs) as established by the California Department of Health Services, or if no California MCLs have been established, then USEPA MCLs were used.

-- = Data reported as total 1,2-DCE prior to 1996.

^ = Data not previously reported due to low levels.

< = Not detected at the detection limit shown.

+ = Data provided by AMD.

** = Well resampled in July 1998 due to potential labeling error.

B = Compound was found in the blank and sample.

NA = Not Analyzed

ND = Not Detected

NE = Not Established

μg/L = microgram per liter

Water Board = California Regional Water Quality Control Board -

San Francisco Bay Region

(1) - Initial results of 268 μg/L for cis-1,2-DCE was higher than standard of 200 μg/L. When rerun with dilution of 50, the result was <250 μg/L. Initial result reported in table.</p> 1,1,1-TCA = 1,1,1-trichloroethane
1,1-DCA = 1,1-dichloroethane
1,1-DCE = 1,1-dichloroethene
1,2-DCB = 1,2-dichlorobenzene
1,2-DCE = 1,2-dichloroethene
BEN = Benzene
BFM = Bromoform
CBN = Chlorobenzene

CDM = Chlorodibromomethane

EBN = Ethylbenzene
Freon 11 = Trichlorofluoromethane
Freon 12 = Dichlorodifluoromethane
Freon 113 = 1,1,2-trichloro-1,2,2-trifluoroethane
PCE = Tetrachloroethene
TCE = Trichloroethene
TOL = Toluene
VC = Vinyl Chloride
XYL = Total Xylenes

Well		Date	Temperature (°C)	pH (SU)	Conductivity (mS/cm)	Turbidity (NTU) uifer Wells	Oxidation-Reduction Potential (mV)	Dissolved Hydrogen (nM)	Alkalinity (mg/L as CaCO3)	Total Orgar Carbon (mg/L)
36D		Nov-99	21.4		Zone A Ac		151			
36D		Apr-03					-263			
36D		Apr-04	21.0				-299			
38-S		Oct-08	21.5				17			
38-S		Oct-09	20.25				149			
38-S		Oct-10	22.01	6.93	9.507	1.5	44.0			
38-S		Oct-11	21.80	6.92	1.366	1.2	140.6			
38-S		Apr-12	18.96	6.94	1.26		-139			1.1
38-S		Oct-12	22.57	6.69	1.265	5.30	-19.1			<1.0
38-S		May-13	22.8	7.01	1.286	32.8	-75			1.3
38-S		Oct-13	21.4	6.65	1.435	3	5.8			<1
38-S		Oct-14	21.7	6.98	1.251	5	-40.1			1.8
38-S		Oct-15	23.2	6.91	1.237		39			0.57 J
38-S		Oct-16	22.3	6.87	1.271		-26			2.3
38-S		Oct-17	23.2	6.98	1333	10.00	105.6			0.58 J
38-S		Oct-18	21.2	7.08	1.441		61.9			
T-7A		Oct-99	20.5				202	1.65	500	2.3
T-7A		Jun-01	18.9				197	3.00	410	<5.0
T-7A		Apr-04	18.9				151			
T-7A		Jan-07	18.2	6.25	1.67		168			
T-7A		May-07	21.1				85			
T-7A		Oct-07	21.3	7.34	0.162	202				
T-7A		Oct-08	21.9				237			
T-7A		Oct-09	21.40	7.01	1.7	30.8	115			
T-7A		Oct-10	20.81	6.88	4.9	0.0	170.0			
T-7A		Oct-11	20.54	6.91	1.535	0.0	222.0			
T-7A		Oct-12	20.88	7.01	1.472	0.0	69.1			<1.0
T-7A		Oct-13	22.5	6.6	1.38	1	50.2			
T-7A		Oct-14	21.7	7	1.301	1	68.1			
T-7A		Jun-15	22.8	6.89	1.372		-12.2			
T-7A		Oct-15	25.17	6.86	1.418		30			
T-7A		Oct-16	22.5	6.9	1.347		-45.3			
T-7A		Oct-17	23.5	6.93	1,416	1	194.6			
T-7A		Oct-18	25.2	7.06	1.613		31.1			
T-7A	Dup	Oct-18	25.2	7.06	1.613		31.1			
EDUCTOR -11		Nov-99	21.3	7.02	1.46	0	200	0.96	470	<2.0
EDUCTOR-11		Jan-01	24.4	7.01	1.45	4	-73			
EDUCTOR-11		Mar-01	18.9	7.06	1.46	20	-300			
EDUCTOR-11		Jun-01	19.6	6.93	1.44	0	-162	3.20	590	10
EDUCTOR-11		Aug-01	21.0	4.92	4.17	22	-125	56,000	1,000	5,900
EDUCTOR-11		Oct-01	21.2	4.85	5.22	147	-20	4,000	690	24,000
EDUCTOR-11		Nov-01	19.5				-66	3,000	2,300	8,000
EDUCTOR-11		Jan-02	19.0				-37	2,100	770	21,000
EDUCTOR-11		Mar-02	19.7				-32	480	3,300	5,900
EDUCTOR-11		Jul-02	19.2				-160	2,800	2,900	1,800
EDUCTOR-11		Oct-02	19.6	5.69	5.52	1	4.7	120	6,200	3,700
EDUCTOR-11		Jan-03	18.9				-77		2,200	2,800
EDUCTOR-11		Apr-03	18.7				-400		2,200	1,700
EDUCTOR-11		Jul-03	19.0	6.32	1.44	11	-87		6,200	8,000
EDUCTOR-11		Oct-03	20.1				-236		2,100	200
EDUCTOR-11		Jan-04	18.8				-260		1,200	16
EDUCTOR-11		Apr-04	19.0	6.45	3.09	33	-247		1,600	46
EDUCTOR-11		Oct-04	20.7			••	-220		1,800	25
EDUCTOR-11		Jan-05	19.2				-239			14
EDUCTOR-11		Apr-05	18.9				-178			55
EDUCTOR-11		Jul-05	19.9				-115			61
EDUCTOR-11		Sep-05	20.7							
EDUCTOR-11		Oct-05	20.5				-211			26
EDUCTOR-11		Jan-06	19.8				-144			330
EDUCTOR-11		Apr-06	19.3				-254			26
EDUCTOR-11		Oct-06	20.5				-162			15
EDUCTOR-11	ļ	Apr-07	19.3	6.43	0.232	51.2	-133			18
EDUCTOR-11		Oct-07	20.0				-151			18
EDUCTOR-11		Oct-08	20.5				-220			
EDUCTOR-11		Oct-09	20.68				-136			6.2
EDUCTOR-11		Mar-10 ^(a)	19.79	6.25	2.47	362	-292		900	570
EDUCTOR-11		Oct-10 ^(b)	18.94	7.24	2.213	391.4	-124.4			160.0
EDUCTOR-11		Oct-10 ^(c)	19.81	5.99	4.413	7.1	-82.8		960	280.0
EDUCTOR-11		Mar-11							2,700	3,600
EDUCTOR-11		May-11		5.57			-67.0		2,200	3,200
EDUCTOR-11		Oct-11	20.40	5.48	3.806	4.0	-81.7		1,400	280
EDUCTOR-11		Apr-12	18.45	5.24	3.813		-26.6			2,200
EDUCTOR-11		Oct-12	20.22	5.43	3.668	9.00	-19			49
EDUCTOR-11		May-13	20.26	5.49	3.478	9.4	-15.9			1,800
EDUCTOR-11		Oct-13	19.9	4.91	2.306	7	11.3			1,390
EDUCTOR-11		Apr-14	18.8	5.59	1.616	9	-24		~~	634
EDUCTOR-11		Sep-14	20.4	5.62	2.46	0	14			
T-2A		Nov-99	21.0	6.77	1.49	0	181	22.8	500	4.1
T-2A		Jan-01	19.0	6.11	1.91	25	-324	190	840	410
T-2A		Mar-01	18.3	6.39	2.33	105	-221	580	820	150
	1	Jun-01	19.7	6.71	2.21	9	-121	12	1,900	1,600

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
T-2A		Aug-01	21.1	6.24	2.78	1	-127	29	330	410
T-2A	1	Oct-01	20.9	6.27	2.8	19	-103	15	1,700	460
										,
T-2A	<u> </u>	Nov-01	19.8	6.62	2.43	67	-85	11	1,200	1,100
T-2A		Jan-02								
T-2A		Apr-02	19.3	6.53	3.13	48	-150	5.2	2,400	490
	+							27		
T-2A		Jul-02	19.2	6.40	4.227	90 NO	-150		2,000	360
T-2A		Oct-02	19.6	6.48	3.79	53	-112	8	2,700	840
T-2A		Jan-03	18.6	6.82	2.68	5	-122		1,700	45
	-									
T-2A		Apr-03	18.9	6.65	2.39	0	-387		1,200	28
T-2A	1	Jul-03	19.2	7.11	2.51	35	-129		1,600	17
T-2A	1	Oct-03	20.2	6.79	2.53	21	-118		1,400	13
T-2A	1	Jan-04	19.3	6.32	2.33	0	-242		1,100	12
T-2A		Apr-04	19.3	6.54	2.37	7	-213		1,400	17
T-2A		Oct-04	20.7	6.51	2.82		-116		1,500	16
									· · · · · · · · · · · · · · · · · · ·	
T-2A		Jan-05	19.2	6.74	2.58	16	-199			7.0
T-2A		Apr-05	19.1	6.67	2.2	235	-99			32
T-2A	 		20.2		2.62		-139			24
		Jul-05		6.41						24
T-2A		Oct-05	20.7	7.06	2.03	410	-199			
T-2A	1	Jan-06	20.0	6.78	0.257	13	-175			
	-									
T-2A		Apr-06	19.5	6.86	1.82	580	-101			
T-2A		Oct-06	19.6	7.72	2.12	202	-155			
T-2A		Apr-07	19.4	6.18	0	131	-60			
T-2A		Oct-07	20.7	6.49	2.41	8.6	-144			
T-2A		Oct-08	20.7	7.02	0.19	48.6	-58			
T-2A		Oct-09	20.64	6.81	2.5	4.3	-76			3.1 J
]	 	L		-				ļ		
T-2A		10/12/2010 ^(c)	20.19	6.66	2.006	0.0	-88.5		980	4.8
T-2A		10/20/2010 ^(b)	19.91	6.65	1.655	773.4	-55.7			340
1}	-									
T-2A		11/15/2010 ^(a)	19.9	6.73	0.82	225	-303		790	120
T-2A		Mar-11							860	180
	-									
T-2A		May-11							960	28
T-2A		Oct-11	20.16	6.65	2.339	2.2	-145.6		1,100	4.8
T-2A	1	Apr-12	18.66	6.97	1.958		-87.9			7.6
	-									
T-2A		Oct-12	20.03	6.73	2.252	2.1	-123.2			6.5
T-2A		May-13	20.34	7.31	2.283	57.9	-137			8.1
	- D									
T-2A	Dup	May-13	20.34	7.31	2.283	57.9	-137			7.7
T-2A		Oct-13	19.8	6.36	1.877	2	-117.5			5.9
T-2A		Apr-14	19.2	6.79	2.112	4	-84			6.4
	-									
T-2A		Sep-14	20.44	6.84	2.37	0	-84		to 120	6.5
T-3A		Oct-08	21.5	7.47	0.13	0	214		==	
T-3A		Oct-09	20.10	7.44	1.68	5	1.67			
T-3A		Oct-10	20.10	6.90	5.499	0.0	80.2			
T-3A		Oct-11	20.39	6.93	1.666	0.2	222.3			
T-3A	 	Oct-12	20.66	6.90	1.445	0.0	122.3			
T-3A		Oct-13	20	6.71	1.303	1	134.9			
T-3A		Apr-14	19.6	6.98	1.376	1	-20			
	-									1
T-3A		Sep-14	20.46	7.15	1.43	0.0	152			
∥ T-8A		Oct-99	21.5	5.78	1.44	1	12 4	1.36	510	2.2
T-8A	1	Jan-01	18.8	6.57	1.44	11	-311			
	<u> </u>									
T-8A		Mar-01	18.9	7.00	1.44	151	17			
T-8A		Jun-01	21.5	6.86	1.49	0	141	3.20	510	<5.0
T-8A		Aug-01	20.1	6.71	1.45	0	140	1.10	560	<5.0
	_									
T-8A		Oct-01	21.0	6.35	1.4	10	77	3.90	470	6.4
T-8A	<u> </u>	Nov-01	20.0	6.96	1.31	4	-116	220	450	<5.0
	1		18.9	6.77	1.35	6	73.5	1.1	510	<5.0
T-8A	1	Jan-02								
T-8A		Mar-02	19.3	7.01	1.69	9	59	7.9	440	<5.0
T-8A	-	Jul-02	20.5	6.22	2		316	13	450	<5.0
	1						67	11		
T-8A		Oct-02	20.5	6.93	1.33	11		17	480	<5.0
T-8A		Jan-03	18.9	6.89	1.4	0	143			
T-8A	<u> </u>	Apr-03	18.9	6.86	1.46	0	58			
		Jul-03	20.4	7.18	1.46	0	86			1
T-8A									***	
T-8A		Oct-03	20.8	6.92	1.44	5	109			
T-8A		Jan-04	19.6	6.50	1.46	0	170		420	
T-8A		Apr-04	19.8	6.75	1.41	0	92		480	1
T-8A		Oct-04	21.5	6.28	1.45	0	-138		EM 000	
T-8A		Apr-05	20.0	6.98	1.44	849	77			
II 1-0A	1			6.68	1.35		79		470	6.9
			71 A							
T-8A		Jul-05	21.4	1 ~ ~ ~ '			400			
T-8A T-8A		Jul-05 Oct-05	22.1	6.55	1.61	0	-100			<5.0
T-8A T-8A		Jul-05 Oct-05	22.1							
T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06	22.1 19.2	6.99	0.15	10	-176			<5.0
T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06	22.1 19.2 19.1	6.99 6.69	0.15 1.37	10 13	-176 -389		 	<5.0 <5.0
T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06	22.1 19.2 19.1 22.4	6.99 6.69 6.59	0.15 1.37 0.156	10 13 12	-176 -389 8			<5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06	22.1 19.2 19.1 22.4	6.99 6.69	0.15 1.37	10 13	-176 -389		 	<5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06	22.1 19.2 19.1 22.4 22.3	6.99 6.69 6.59 6.52	0.15 1.37 0.156 0.151	10 13 12 10	-176 -389 8 -101		 	<5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07	22.1 19.2 19.1 22.4 22.3 19.4	6.99 6.69 6.59 6.52 6.33	0.15 1.37 0.156 0.151 1.6	10 13 12 10	-176 -389 8 -101 21	 	 	<5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07	22.1 19.2 19.1 22.4 22.3 19.4 21.3	6.99 6.69 6.59 6.52 6.33 6.73	0.15 1.37 0.156 0.151 1.6 1.55	10 13 12 10 21.9	-176 -389 8 -101 21 19		 	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07	22.1 19.2 19.1 22.4 22.3 19.4 21.3	6.99 6.69 6.59 6.52 6.33 6.73	0.15 1.37 0.156 0.151 1.6 1.55	10 13 12 10 21.9	-176 -389 8 -101 21 19	 	 	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2	6.99 6.69 6.59 6.52 6.33 6.73 7.03	0.15 1.37 0.156 0.151 1.6 1.55 0.159	10 13 12 10 21.9 8.1	-176 -389 8 -101 21 19 -300	 	 	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87	10 13 12 10 21.9 8.1	-176 -389 8 -101 21 19 -300	 	 	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5	6.99 6.69 6.59 6.52 6.33 6.73 7.03	0.15 1.37 0.156 0.151 1.6 1.55 0.159	10 13 12 10 21.9 8.1 2.3	-176 -389 8 -101 21 19 -300 -240 -69	 	 	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87	10 13 12 10 21.9 8.1 2.3	-176 -389 8 -101 21 19 -300 -240 -69	 	 	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69	10 13 12 10 21.9 8.1 2.3 9.8	-176 -389 8 -101 21 19 -300 -240 -69	 		<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09 Apr-10	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1 18.98	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71 6.97	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69	10 13 12 10 21.9 8.1 2.3 9.8 24.5	-176 -389 8 -101 21 19 -300 -240 -69 -69	 	 	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69	10 13 12 10 21.9 8.1 2.3 9.8	-176 -389 8 -101 21 19 -300 -240 -69	 		<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09 Apr-10 Oct-10	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1 18.98 20.40	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71 6.97 6.85	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69 1.32	10 13 12 10 21.9 8.1 2.3 9.8 24.5 0.0	-176 -389 8 -101 21 19 -300 -240 -69 -69 -33 33.1			<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <1.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09 Apr-10 Oct-10 Oct-11	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1 18.98 20.40 20.50	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71 6.97 6.85 6.87	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69 1.32 1.546 1.538	10 13 12 10 21.9 8.1 2.3 9.8 24.5 0.0 0.2	-176 -389 8 -101 21 19 -300 -240 -69 -69 -33 33.1 192.4			<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09 Apr-10 Oct-10	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1 18.98 20.40	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71 6.97 6.85	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69 1.32 1.546 1.538 1.362	10 13 12 10 21.9 8.1 2.3 9.8 24.5 0.0	-176 -389 8 -101 21 19 -300 -240 -69 -69 -33 33.1 192.4 12.8			<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09 Apr-10 Oct-10 Oct-11	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1 18.98 20.40 20.50	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71 6.97 6.85 6.87	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69 1.32 1.546 1.538	10 13 12 10 21.9 8.1 2.3 9.8 24.5 0.0 0.2	-176 -389 8 -101 21 19 -300 -240 -69 -69 -33 33.1 192.4			<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09 Apr-10 Oct-10 Oct-11 Apr-12 Oct-12	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1 18.98 20.40 20.50 19.73 21.24	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71 6.97 6.85 6.87 6.86 6.89	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69 1.32 1.546 1.538 1.362 1.41	10 13 12 10 21.9 8.1 2.3 9.8 24.5 0.0 0.2	-176 -389 8 -101 21 19 -300 -240 -69 -69 -33 33.1 192.4 12.8 69			<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09 Apr-10 Oct-11 Apr-12 Oct-12 May-13	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1 18.98 20.40 20.50 19.73 21.24 22.48	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71 6.97 6.85 6.87 6.86 6.89 6.59	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69 1.32 1.546 1.538 1.362 1.41 1.431	10 13 12 10 21.9 8.1 2.3 9.8 24.5 0.0 0.2 0	-176 -389 8 -101 21 19 -300 -240 -69 -69 -33 33.1 192.4 12.8 69 63			<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0
T-8A T-8A T-8A T-8A T-8A T-8A T-8A T-8A		Jul-05 Oct-05 Jan-06 Apr-06 Jul-06 Oct-06 Jan-07 Apr-07 Oct-07 Oct-08 Feb-09 Oct-09 Apr-10 Oct-10 Oct-11 Apr-12 Oct-12	22.1 19.2 19.1 22.4 22.3 19.4 21.3 22.2 21.8 18.5 23.1 18.98 20.40 20.50 19.73 21.24	6.99 6.69 6.59 6.52 6.33 6.73 7.03 6.98 7.31 6.71 6.97 6.85 6.87 6.86 6.89	0.15 1.37 0.156 0.151 1.6 1.55 0.159 1.87 1.61 1.69 1.32 1.546 1.538 1.362 1.41	10 13 12 10 21.9 8.1 2.3 9.8 24.5 0.0 0.2	-176 -389 8 -101 21 19 -300 -240 -69 -69 -33 33.1 192.4 12.8 69			<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0

Table
1986
1.48
1-8A
T-984
T-956
TABLE
TABLE 1965 1968 1968 1968 1972 1972 1974 1975
Tight
T-9A
T-98
T-9A
T-9A
T-9A
T-98k
T-9A
T-9A
T-96
T-9A
T-9A
1-9A
1-9A
T-9A
Figh
T-9A
T-0A
T-9A
T-9A
T-9A
T-8A
T-9A
T-19A
T-13A
T-13A
T-13A
T-13A
T-13A Jul 06 20.8 6.23 0.154 5 199 4.50 T-13A Jan 07 20.4 6.39 1.72 - 65 4.50 T-13A Jan 07 20.4 6.39 1.72 - 65 4.50 T-13A Apr-07 20.2 6.38 1.69 - 146 4.50 T-13A Apr-07 20.4 6.70 0.134 9.9 236 4.50 T-13A Jul 07 20.4 6.70 0.134 9.9 236 4.10 T-13A Oct-08 20.4 7.15 0.32 325 1.81 410 T-13A Oct-09 20.4 7.15 0.32 325 1.81 37 T-13A Oct-09 20.4 7.15 0.32 325 1.81 37 T-13A Oct-09 20.4 7.15 0.32 325 1.81 37 T-13A Oct-00 20.28 6.53 1.77 1.8 1.10 2.3 T-13A Apr-07 20.4 6.77 1.47 23.4 1.10 2.3 T-13A Apr-10 18.57 6.77 1.47 23.4 1.10 2.3 T-13A Oct-10 12.4 6.15 1.589 0.0 1.19 10 T-13A Oct-10 12.4 7.70 1.441 1.50 1.50 1.441 1.50 1.50 1.441 1.50 1.50 1.441 1.50 1.50 1.50 1.441 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5
T-13A
T-13A Oct-09 20.28 6.53 1.77 1.8 -110
T-13A Oct-09 20.28 6.53 1.77 1.8 -110
T-139A
T-139A Oct-10 19.24 6.75 1.538 0.0 -119 1.0 T-139A Oct-11 19.60 6.79 1.524 0.0 -23 1.0 T-139A Apr-12 18.9 6.41 1.552113 14 T-139A Oct-12 20.4 6.60 1.48 3.4 -105.6 6.6 T-139A May-13 20.41 7.02 1.412 55.1 -133 2.4 T-139A Oct-13 20.8 6.85 1.419 55.1 -133 2.4 T-139A Oct-13 20.8 6.85 1.419 55.1 -133 2.4 T-139A Oct-13 20.8 6.85 1.419 52 133 2.4 T-139A Oct-13 20.8 6.85 1.419 52 791 1.2 T-139A Oct-14 20.6 6.93 1.309 12 90 1.7 T-139A Oct-14 20.6 6.93 1.309 12 90 1.7 T-139A Oct-14 20.6 6.93 1.393 77 0.094 J T-139A Oct-16 21.6 6.86 1.393 77 0.094 J T-139A Oct-16 21.6 6.86 1.393 77 0.094 J T-139A Oct-16 20.1 6.88 1.133 55 1.1 T-139A Oct-17 20.3 6.93 1.400 2 155.4 1.1 T-14A Nov-05 20.6 6.37 1.44 36 242 490 5.4 T-14A Nov-05 20.6 6.37 1.44 36 242 490 5.4 T-14A Apr-06 20.1 6.91 1.51 44 80
T-13A
T-13A
T-13A
T-13A
T-13A Dup May-13 20.41 7.02 1.412 55.1 1.133 2.4 T-13A Dup May-13 20.41 7.02 1.412 55.1 1.133 2.3 T-13A Dup May-13 20.6 6.85 1.418 52 7.91 2.2 T-13A Oct-13 20.6 6.85 1.418 52 7.91 2.2 T-13A Apr-14 19.6 6.93 1.399 12 90 1.7 T-13A Oct-14 20.6 6.93 1.399 12 90 2.7 T-13A Jun-15 21.8 6.86 1.393 77 2.2 T-13A Jun-15 21.8 6.86 1.133 555 0.0.41 T-13A Dot-15 21.5 6.86 1.133 555 0.0.74 J T-13A May-16 20.5 6.87 1.347 6 12.3 1.0 T-13A Oct-16 20.1 6.81 1.271 53.4 1.1 T-13A Oct-16 20.1 6.81 1.271 53.4 1.1 T-13A Oct-17 20.3 6.93 1.400 2 153.4 1.1 T-13A Oct-18 21.2 7.39 1.278 1.318 1.318 1.1 T-13A Oct-18 21.2 7.39 1.278 1.318 1.1 T-14A Nov-05 20.6 6.37 1.44 36 242 490 5.4 T-14A Jan-06 19.1 6.82 0.161 0 150 4.0 T-14A Oct-06 20.5 6.91 1.51 44 80 4.0 T-14A Jul-07 24.6 6.45 1.46 1.2 T-14A Jul-07 24.6 6.45 1.46 124 124 4.0 T-14A Jul-07 24.6 6.45 1.46 124 124 4.0 T-14A Jul-07 24.6 6.45 1.46 124 124 4.0 T-14A Oct-07 20.9 6.01 2.03 71.5 163 124 4.0 T-14A Oct-07 20.9 6.01 2.03 71.5 163 4.0 T-14A Oct-10 19.99 6.67 4.45 4.7 1.70 4.0 T-14A Oct-10 19.99 6.67 4.45 4.7 1.70 1.2 T-14A Oct-11 19.03 6.77 1.455 0.9 91 117 1.2 T-14A Oct-14 19.5 6.91 1.56 2 2.66 6.8 1.11 1.51 1.1 1.1 1.1 1.1 1.1 1.1 1.1
T-13A Dup May-13
T-13A Dup May-13
T-13A
T-13A
T-13A
T-13A Oct-14 20.6 6.93 1.332 4 -59.4 2.1 T-13A Jun-15 21.8 6.86 1.393 -77 0.94 J T-13A Oct-15 21.5 6.86 1.133 -55 0.74 J T-13A May-16 20.5 6.87 1.347 6 -12.3 1.1 T-13A Oct-16 20.1 6.81 1.271 -53.4 1.1 T-13A Oct-18 21.2 7.39 1.278 -131.8 0.55 J T-13A Oct-18 21.2 7.39 1.278 -131.8
T-13A
T-13A
T-13A May-16 20.5 6.87 1.347 6 -12.3 1.1 T-13A Oct-16 20.1 6.81 1.271 -53.4 1.1 T-13A Oct-18 21.2 7.39 1.278 -131.8 0.52 J T-13A Nov-05 20.6 6.37 1.44 36 242 490 5.4 T-14A Nov-05 20.6 6.37 1.44 36 242 490 5.4 T-14A Jan-06 19.1 6.92 0.161 0 150 <5.0
T-13A May-16 20.5 6.87 1.347 6 -12.3 1.1 T-13A Oct-16 20.1 6.81 1.271 -53.4 1.1 T-13A Oct-18 21.2 7.39 1.278 -131.8 0.52 J T-13A Nov-05 20.6 6.37 1.44 36 242 490 5.4 T-14A Nov-05 20.6 6.37 1.44 36 242 490 5.4 T-14A Jan-06 19.1 6.92 0.161 0 150 <5.0
T-13A Oct-16 20.1 6.81 1.271 -53.4 1.1 T-13A Oct-17 20.3 6.93 1.400 2 153.4 0.52 J T-13A Oct-18 21.2 7.39 1.278 -131.8
T-13A Oct-17 20.3 6.93 1.400 2 153.4 0.52 J T-13A Oct-18 21.2 7.39 1.278 -131.8 T-14A Nov-05 20.6 6.37 1.44 36 242 490 5.4 T-14A Jan-06 19.1 6.92 0.161 0 150 <5.0
T-13A Oct-18 21.2 7.39 1.278 -131.8
T-13A Oct-18 21.2 7.39 1.278 -131.8
T-14A Nov-05 20.6 6.37 1.44 36 242 490 5.4 T-14A Jan-06 19.1 6.92 0.161 0 150 <-5.0
T-14A Jan-06 19.1 6.92 0.161 0 150
T.14A Apr-06 20.2 6.91 1.51 44 80 <5.0
T-14A Oct-06 20.5 6.71 0.151 10 51
T-14A Oct-06 20.5 6.71 0.151 10 51
T-14A Apr-07 24.6 6.45 1.46 124 <5.0 T-14A Jul-07 21.1 6.87 0.133 9.4 141 <5.0
T-14A Jul-07 21.1 6.87 0.133 9.4 141 <5.0
T-14A Oct-07 20.9 6.01 2.03 71.5 -163 430 T-14A Oct-08 21.0 6.66 243 -466 22 T-14A Feb-09 18.82 7.14 1.4 50.2 -89 T-14A Oct-09 20.65 7.43 1.72 41.8 -154 8.0 T-14A Apr-10 18.36 6.80 1.51 252.0 -110 8.0 T-14A Oct-10 19.99 6.87 4.45 4.7 -170 1.2 T-14A Oct-11 20.03 6.77 1.455 0.9 91 1.2 T-14A Apr-12 17.8 6.71 1.413 -117 1.2 T-14A Oct-12 20.51
T-14A Oct-07 20.9 6.01 2.03 71.5 -163 430 T-14A Oct-08 21.0 6.66 243 -466 22 T-14A Feb-09 18.82 7.14 1.4 50.2 -89 T-14A Oct-09 20.65 7.43 1.72 41.8 -154 8.0 T-14A Apr-10 18.36 6.80 1.51 252.0 -110 8.0 T-14A Oct-10 19.99 6.87 4.45 4.7 -170 1.2 T-14A Oct-11 20.03 6.77 1.455 0.9 91 1.2 T-14A Apr-12 17.8 6.71 1.413 -117 1.2 T-14A Oct-12 20.51
T-14A Oct-08 21.0 6.66 243 -466 22 T-14A Feb-09 18.82 7.14 1.4 50.2 -89 8.0 T-14A Apr-10 18.36 6.80 1.51 252.0 -110 1.3 J 1.12 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 </td
T-14A Feb-09 18.82 7.14 1.4 50.2 -89 8.0 T-14A Oct-09 20.65 7.43 1.72 41.8 -154 8.0 T-14A Apr-10 18.36 6.80 1.51 252.0 -110 1.3 J T-14A Oct-10 19.99 6.87 4.45 4.7 -170 1.2 T-14A Oct-11 20.03 6.77 1.455 0.9 91 1.2 T-14A Apr-12 17.8 6.71 1.413 -117 6.6 T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8
T-14A Oct-09 20.65 7.43 1.72 41.8 -154 8.0 T-14A Apr-10 18.36 6.80 1.51 252.0 -110 1.3 J T-14A Oct-10 19.99 6.87 4.45 4.7 -170 1.2 T-14A Oct-11 20.03 6.77 1.455 0.9 91 1.2 T-14A Apr-12 17.8 6.71 1.413 -117 1.2 T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8 T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8 1.6 <
T-14A Apr-10 18.36 6.80 1.51 252.0 -110 1.3 J T-14A Oct-10 19.99 6.87 4.45 4.7 -170 1.2 T-14A Oct-11 20.03 6.77 1.455 0.9 91 1.2 T-14A Apr-12 17.8 6.71 1.413 -117 6.6 T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8 6.6 T-14A May-13 20.1 7.21 1.393 31.2 -151 1.6 1.6
T-14A Apr-10 18.36 6.80 1.51 252.0 -110 1.3 J T-14A Oct-10 19.99 6.87 4.45 4.7 -170 1.2 T-14A Oct-11 20.03 6.77 1.455 0.9 91 1.2 T-14A Apr-12 17.8 6.71 1.413 -117 6.6 T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8 6.6 T-14A May-13 20.1 7.21 1.393 31.2 -151 1.6 1.6
T-14A Oct-10 19.99 6.87 4.45 4.7 -170 1.2 T-14A Oct-11 20.03 6.77 1.455 0.9 91 1.2 T-14A Apr-12 17.8 6.71 1.413 -117 6.6 T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8 T-14A May-13 20.1 7.21 1.393 31.2 -151 T-14A Oct-13 18.2 6.67 1.232 4 -109.9 1.2 T-14A Oct-14 19.5 6.91 1.256 2
T-14A Oct-11 20.03 6.77 1.455 0.9 91 1.2 T-14A Apr-12 17.8 6.71 1.413 -117 6.6 T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8 T-14A May-13 20.1 7.21 1.393 31.2 -151 1.6 1.2 1.2
T-14A Apr-12 17.8 6.71 1.413 -117 6.6 T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8 1.2 1.2 1.2
T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8 1.6 T-14A May-13 20.1 7.21 1.393 31.2 -151 1.6 T-14A Oct-13 18.2 6.67 1.232 4 -109.9 <1
T-14A Oct-12 20.51 6.63 1.363 3.9 -79.8 1.6 T-14A May-13 20.1 7.21 1.393 31.2 -151 1.6 T-14A Oct-13 18.2 6.67 1.232 4 -109.9 <1
T-14A May-13 20.1 7.21 1.393 31.2 -151 1.6 T-14A Oct-13 18.2 6.67 1.232 4 -109.9 <1
T-14A Oct-13 18.2 6.67 1.232 4 -109.9
T-14A Oct-13 18.2 6.67 1.232 4 -109.9 <1 T-14A Apr-14 18.5 6.9 1.338 7 -92.5 1.2 T-14A Oct-14 19.5 6.91 1.256 2 -68.6 1.2 T-14A Oct-15 22.0 6.84 1.278 -56 0.68 J T-14A Oct-16 20 6.79 1.231 -84.5 1 T-14A Oct-17 20.1 6.89 1.333 3 172.4 0.48 J T-14A Oct-18 20.9 7.33 1.319 -213.6
T-14A Apr-14 18.5 6.9 1.338 7 -92.5 1.2 T-14A Oct-14 19.5 6.91 1.256 2 -68.6 1.2 T-14A Oct-15 22.0 6.84 1.278 -56 0.68 J T-14A Oct-16 20 6.79 1.231 -84.5 1 T-14A Oct-17 20.1 6.89 1.333 3 172.4 0.48 J T-14A Oct-18 20.9 7.33 1.319 -213.6
T-14A Oct-14 19.5 6.91 1.256 2 -68.6 1.2 T-14A Oct-15 22.0 6.84 1.278 -56 0.68 J T-14A Oct-16 20 6.79 1.231 -84.5 1 T-14A Oct-17 20.1 6.89 1.333 3 172.4 0.48 J T-14A Oct-18 20.9 7.33 1.319 -213.6
T-14A Oct-15 22.0 6.84 1.278 -56 0.68 J T-14A Oct-16 20 6.79 1.231 -84.5 1 T-14A Oct-17 20.1 6.89 1.333 3 172.4 0.48 J T-14A Oct-18 20.9 7.33 1.319 -213.6
T-14A Oct-16 20 6.79 1.231 -84.5 1 T-14A Oct-17 20.1 6.89 1.333 3 172.4 0.48 J T-14A Oct-18 20.9 7.33 1.319 -213.6
T-14A Oct-16 20 6.79 1.231 -84.5 1 T-14A Oct-17 20.1 6.89 1.333 3 172.4 0.48 J T-14A Oct-18 20.9 7.33 1.319 -213.6
T-14A Oct-17 20.1 6.89 1.333 3 172.4 0.48 J T-14A Oct-18 20.9 7.33 1.319 -213.6
T-14A Oct-18 20.9 7.33 1.319213.6
1 1975 1 1979 O 61.0 0.77 1.70 60 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70
T-15A Apr-06 20.3 7.02 0.901 466 -104 <- <5.0

T-17A			·						
1-96		1						 	
I-15A	T-15A	Oct-06	21.4	6.77	0.147	10	-15	 	<5.0
T150	T-15A	Jan-07	20.1	6.37	1.64		69	 	<5.0
TiSO		· L · · · · · · · · · · · · · · · · · ·				504		 	
7.55									
T-15A		<u> </u>							
T-16A								 	
T-15A								 	
T-16 A	T-15A	Oct-09	21.27	6.64		27.9		 	<5.0
T15A	T-15A	Oct-10	21.27	6.84	1.489	0.0	63	 	
T-15A							94	 	0.98.1
T-158								 	
T-15A									
T-15 A						L		 	1.3
T-158A		1						 	
Fisher		Apr-14		6.88		2		 	<1
Tibba	T-15A	Oct-14	21.2	6.91	1.277	1	93.6	 	
Ti56								 	
1-15A									
T-156A									
T-16A								 	
T-16A				1					}
T-19A	T-16A	Nov-05	22.0	6.41	1.48	15	-101	 590	7.6
T-19A	T-16A	Jan-06	20.7	6.96	1.42	224	-107	 	<5.0
T-16A		1						 	
T-16A								 	
T-16A									
T-16A								 	
T-16A		.1				567		 	
T-16A	T-16A	Oct-08	24.0	6.73	212		-135	 	<5.0
T-16A									
T-16A Oc.11 21.35 6.80 1.479 0.7 274.7		i i				1			!
T-16A		1						 	
T-16A								 	
T-16A		,						 	
T-16A	T-16A	Oct-13	21	6.58	1.275	26	149.2	 	
T+16A								 	
T-16A									
T-16A									
T-16A								 	
T-17A						/		 	
T-17A	T-16A	Oct-18	25.2	7.31	1.343		-132.6	 	
T-17A	T-17A	Nov-11	18.80	7.7			-25	 	0.71 J
T-17/A		1						 	
T-17A		1							
T-17/A					ł .				
T-17A		· L · · · · · · · · · · · · · · · · · ·						 	
T-17/A								 	
T-17A	T-17A	Oct-13	20.4	6.79	1.231	2	-30.5	 	<1
T-17A	T-17A	Apr-14	19.6	7.02	1.258	6	-42	 	<1
T-17A								 	
T-17A									
T-17A								 	
T-177A								 	
T-17A		May-16				4		 	
T-17A	T-17A	Oct-16	21.6	7.02	1.281		-60.5	 	0.77 J
T-17A Oct-18						4		 	
T-19A								 	ł
T-19A						1		 	1
T-19A								 	•
T-19A Feb-09 15.76 7.00 1.46 0.0 -94 T-19A Oct-09 22.67 6.84 1.8 2 -120 5.1 T-19A Apr-10 14.80 6.90 0.714 7.2 -137 7.6 T-19A Oct-10 19.98 6.81 4.452 0.0 -120 5.5 T-19A Oct-11 21.15 6.88 13.26 0.6 -133 5.5 T-19A Apr-12 16.83 6.56 2.056 141 16 T-19A Apr-12 16.83 6.56 2.056 141 16 T-19A Apr-12 16.83 6.56 2.056 141 16 T-19A Apr-14 16 6.86 1.024 7 7.96 1.22 T-19A Apr-14 16 6.86 1.024 7 7.96 3.6 T-19A Oct-13 21.7 6.67 1.542 11 -105.2 4.4 T-19A Oct-14 21.6 6.82 1.346 4 -119.1 3.2 T-19A Oct-15 22.60 6.9 1.323 112 1.8 T-19A Oct-15 22.60 6.9 1.323 112 1.6 T-19A Apr-14 16 20.90 7.0 1.231 33.0 -97 2 1.6 T-19A Oct-16 22.60 6.9 1.323 1.12 1.6 T-19A Oct-16 22.60 6.9 1.323 1.2 1.6 T-19A Oct-16 22.60 6.9 1.29 1.5 T-19A Oct-16 22.60 6.9 1.29 1.5 T-19A Oct-16 22.50 6.9 1.29 1.5 T-19A Oct-16 22.50 6.9 1.29 1.5 T-19A Oct-16 22.50 6.9 1.29 1.3 T-19A Oct-16 22.50 6.9 1.29 1.3 T-19A Oct-16 22.50 0.9 1.29 1.3 T-19A Oct-16 22.60 6.9 1.29 1.3 T-19A Oct-16 22.60 6.9 1.29	T-19A	Oct-07	22.0	5.47	6.13	404	-136	 	3,500
T-19A	T-19A	Oct-08	22.4	6.49	498		-344	 	24
T-19A						0.0		 	
T-19A Apr-10 14 80 6.90 0.714 7.2 -137 7.6 T-19A Oct-10 19.98 6.81 4.452 0.0 -120 5.5 T-19A Oct-11 21.15 6.88 1.326 0.6 -133 5.5 T-19A Apr-12 16.83 6.56 2.056 -141 16 T-19A Oct-12 21.14 6.59 2.042 11 -1364 12 T-19A May-13 19.07 7.09 1.519 30.1 -159 5.4 T-19A Oct-13 21.7 6.67 1.542 11 -105.2 4.4 T-19A Oct-14 21.6 6.82 1.346 4 -119.1 3.2 T-19A Oct-15 22.60 6.9 1.323									1
T-19A								 	
T-19A Oct-11 21.15 6.88 1.326 0.6 -133 5.5 T-19A Apr-12 16.83 6.56 2.056 -141 16 T-19A Oct-12 21.14 6.59 2.042 11 -136.4 12 T-19A May-13 19.07 7.09 1.519 30.1 -159 5.4 T-19A Oct-14 21.6 6.86 1.024 7 96 3.6 T-19A Oct-14 21.6 6.82 1,346 4 -119.1 3.2 T-19A Jun-15 21.20 6.9 1,323 -112 1.8 T-19A May-16 20.90 7.0 1,231 33.0 1.5 T-19A Oct-16 22.60 6.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
T-19A								 	
T-19A	T-19A	Oct-11	21.15	6.88		0.6	-133	 	5.5
T-19A Oct-12 21.14 6.59 2.042 11 -136.4								 	
T-19A May-13 19.07 7.09 1.519 30.1 -159 5.4 T-19A Oct-13 21.7 6.67 1.542 11 -105.2 4.4 T-19A Apr-14 16 6.86 1.024 7 -96 3.6 T-19A Oct-14 21.6 6.82 1.346 4 -119.1 3.2 T-19A Jun-15 21.20 6.9 1.317 -92 1.8 T-19A Oct-16 22.60 6.9 1.323 -112 1.6 T-19A Oct-16 22.60 6.9 1.29 -80.4 2 T-19A Oct-18 22.5 6.9 1.29 -80.4 1.5 T-19A Oct-18 23.5 7.11 <td></td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td>						11			
T-19A Oct-13 21.7 6.67 1.542 11 -105.2 4.4 T-19A Apr-14 16 6.82 1.346 4 -119.1 3.6 T-19A Oct-14 21.6 6.82 1.346 4 -119.1 3.2 T-19A Jun-15 21.20 6.9 1.317 -92 1.8 T-19A Oct-15 22.60 6.9 1.323 -112 1.6 T-19A May-16 20.90 7.0 1.231 33.0 -97 2 T-19A Oct-16 22.60 6.9 1.29 -80.4 1.5 T-19A Oct-17 22.7 6.97 1.353 2.0 -31.0 1.5 T-19A Oct-18 23.5 7.11 1.317 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
T-19A Apr-14 16 6.86 1.024 7 -96 3.6 T-19A Oct-14 21.6 6.82 1.346 4 -119.1 3.2 T-19A Jun-15 21.20 6.9 1.317 -92 1.8 T-19A Oct-15 22.60 6.9 1.323 -112 1.6 T-19A May-16 20.90 7.0 1.231 33.0 -97 2 T-19A Oct-16 22.60 6.9 1.29 -80.4 1.5 T-19A Oct-17 22.7 6.97 1.353 2.0 -31.0 1.3 T-19A Oct-18 23.5 7.11 1.317 -128.1						L		 	
T-19A Oct-14 21.6 6.82 1.346 4 -119.1 3.2 T-19A Jun-15 21.20 6.9 1.317 -92 1.8 T-19A Oct-15 22.60 6.9 1.323 -112 1.8 T-19A May-16 20.90 7.0 1.231 33.0 -97 2 T-19A Oct-16 22.60 6.9 1.29 -80.4 1.5 T-19A Oct-17 22.7 6.97 1.353 2.0 -31.0 1.5 T-19A Oct-17 22.7 6.97 1.351 1.5 T-19A Oct-18 23.5 7.11 1.317 -128.1								 	
T-19A Jun-15 21.20 6.9 1.317 -92 1.8 T-19A Oct-15 22.60 6.9 1.323 -112 1.6 T-19A May-16 20.90 7.0 1.231 33.0 -97 2 T-19A Oct-16 22.60 6.9 1.29 -80.4 1.5 T-19A Oct-17 22.7 6.97 1.353 2.0 -31.0 1.5 T-19A Oct-18 23.5 7.11 1.317 -128.1 1.3 T-23A Sep-07 20.6 7.12 1.46 163 105 -								 	
T-19A Oct-15 22.60 6.9 1.323 -112 1.6 T-19A May-16 20.90 7.0 1.231 33.0 -97 2 T-19A Oct-16 22.60 6.9 1.29 -80.4 1.5 T-19A Oct-17 22.7 6.97 1.353 2.0 -31.0 1.3 T-19A Oct-18 23.5 7.11 1.317 -128.1	T-19A	Oct-14	21.6	6.82	1.346	4	-119.1	 	3.2
T-19A Oct-15 22.60 6.9 1.323 -112 1.6 T-19A May-16 20.90 7.0 1.231 33.0 -97 2 T-19A Oct-16 22.60 6.9 1.29 -80.4 1.5 T-19A Oct-17 22.7 6.97 1.353 2.0 -31.0 1.3 T-19A Oct-18 23.5 7.11 1.317 -128.1								 	
T-19A May-16 20.90 7.0 1.231 33.0 -97 2 T-19A Oct-16 22.60 6.9 1.29 -80.4 1.5 T-19A Oct-17 22.7 6.97 1.353 2.0 -31.0 1.5 T-19A Oct-18 23.5 7.11 1.317 -128.1								 	
T-19A Oct-16 22.60 6.9 1.29 -80.4 1.5 T-19A Oct-17 22.7 6.97 1.353 2.0 -31.0 1.3 T-19A Oct-18 23.5 7.11 1.317 -128.1						1			
T-19A Oct-17 22.7 6.97 1.353 2.0 -31.0 1.3 T-19A Oct-18 23.5 7.11 1.317 -128.1						33.0		 	
T-19A Oct-18 23.5 7.11 1.317 -128.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>								 	
T-23A Sep-07 20.6 7.12 1.46 163 105 <5.0 T-23A Oct-07 20.3 6.65 0.19 593 -230 190 T-23A Oct-08 20.1 6.73 0.423 -444 19 T-23A Feb-09 18.8 7.13 1.73 32.5 -89 19 T-23A Oct-09 20.02 7.60 1.79 6.1 -141 1.5 1.5 1.3 J						2.0	-31.0	 	1.3
T-23A Sep-07 20.6 7.12 1.46 163 105 <5.0 T-23A Oct-07 20.3 6.65 0.19 593 -230 190 T-23A Oct-08 20.1 6.73 0.423 -444 19 T-23A Feb-09 18.8 7.13 1.73 32.5 -89 19 T-23A Oct-09 20.02 7.60 1.79 6.1 -141 1.5 1.5 1.3 J	T-19A	Oct-18	23.5	7.11	1.317		-128.1	 	
T-23A Oct-07 20.3 6.65 0.19 593 -230 190 T-23A Oct-08 20.1 6.73 0.423 -444 19 T-23A Feb-09 18.8 7.13 1.73 32.5 -89 19 19 19 15 15 1.3 J 1.3 J 1.3 J 1.3 J	T-23A	Sep-07		7.12	1.46	163	105	 	<5.0
T-23A Oct-08 20.1 6.73 0.423 -444 19 T-23A Feb-09 18.8 7.13 1.73 32.5 -89 1.5 1.5 1.5 1.3 J 1.3 J 1.1 1.1 1.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
T-23A Feb-09 18.8 7.13 1.73 32.5 -89 15 T-23A Oct-10 19.12 6.79 1.57 0.0 -82 1.1 T-23A Oct-11 19.76 6.85 1.61 0.5 -16 1.1 T-23A Apr-12 18.0 6.49 1.71 -123 1.1 T-23A Oct-12 19.8 6.61 1.49 18.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
T-23A Oct-09 20.02 7.60 1.79 6.1 -141 15 T-23A Apr-10 17.15 6.70 1.51 34.5 -144 1.3 J T-23A Oct-10 19.12 6.79 1.57 0.0 -82 1.1 T-23A Oct-11 19.76 6.85 1.61 0.5 -16 1.1 T-23A Apr-12 18.0 6.49 1.71 -123 1.1 T-23A Oct-12 19.8 6.61 1.49 18.9 -91.9 6.8 T-23A May-13 20.28 7.06 1.484 51.5 -147 3.3 T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>L</td><td></td><td> </td><td></td></tr<>						L		 	
T-23A Apr-10 17.15 6.70 1.51 34.5 -144 1.3 J T-23A Oct-10 19.12 6.79 1.57 0.0 -82 1.1 T-23A Oct-11 19.76 6.85 1.61 0.5 16 1.1 T-23A Apr-12 18.0 6.49 1.71 -123 1.1 T-23A Oct-12 19.8 6.61 1.49 18.9 -91.9 6.8 T-23A May-13 20.28 7.06 1.484 51.5 -147 3.3 T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td>1</td></tr<>								 	1
T-23A Oct-10 19.12 6.79 1.57 0.0 -82 1.1 T-23A Oct-11 19.76 6.85 1.61 0.5 -16 1.1 T-23A Apr-12 18.0 6.49 1.71 -123 34 T-23A Oct-12 19.8 6.61 1.49 18.9 -91.9 6.8 T-23A May-13 20.28 7.06 1.484 51.5 -147 3.3 T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 T-23A Jun-15 20.4 6.96 1.409 -64 0.89								 	
T-23A Oct-10 19.12 6.79 1.57 0.0 -82 1.1 T-23A Oct-11 19.76 6.85 1.61 0.5 -16 1.1 T-23A Apr-12 18.0 6.49 1.71 -123 34 T-23A Oct-12 19.8 6.61 1.49 18.9 -91.9 6.8 T-23A May-13 20.28 7.06 1.484 51.5 -147 3.3 T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 T-23A Jun-15 20.4 6.96 1.409 -64 0.89		Apr-10				34.5	-144	 	1.3 J
T-23A Oct-11 19.76 6.85 1.61 0.5 -16 1.1 T-23A Apr-12 18.0 6.49 1.71 -123 34 T-23A Oct-12 19.8 6.61 1.49 18.9 -91.9 6.8 T-23A May-13 20.28 7.06 1.484 51.5 -147 3.3 T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 T-23A Oct-14 20.4 6.94 1.35 9 -99 3.5 T-23A Jun-15 20.4 6.96 1.409 -64 0.89								 	
T-23A Apr-12 18.0 6.49 1.71 -123 34 T-23A Oct-12 19.8 6.61 1.49 18.9 -91.9 6.8 T-23A May-13 20.28 7.06 1.484 51.5 -147 3.3 T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 T-23A Oct-14 20.4 6.94 1.35 9 -99 3.5 T-23A Jun-15 20.4 6.96 1.409 -64 0.89									
T-23A Oct-12 19.8 6.61 1.49 18.9 -91.9 6.8 T-23A May-13 20.28 7.06 1.484 51.5 -147 3.3 T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 T-23A Oct-14 20.4 6.94 1.35 9 -99 3.5 T-23A Jun-15 20.4 6.96 1.409 -64 0.89						1		 	
T-23A May-13 20.28 7.06 1.484 51.5 -147 3.3 T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 T-23A Oct-14 20.4 6.94 1.35 9 -99 3.5 T-23A Jun-15 20.4 6.96 1.409 -64 0.89								 	
T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 T-23A Oct-14 20.4 6.94 1.35 9 -99 3.5 T-23A Jun-15 20.4 6.96 1.409 -64 0.89								 	
T-23A Oct-13 20.5 6.69 1.523 847 -108 3.6 T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 T-23A Oct-14 20.4 6.94 1.35 9 -99 3.5 T-23A Jun-15 20.4 6.96 1.409 -64 0.89	T-23A		20.28	7.06	1.484	51.5	-147	 	3.3
T-23A Apr-14 18.1 6.89 1.39 11 -123 1.7 T-23A Oct-14 20.4 6.94 1.35 9 -99 3.5 T-23A Jun-15 20.4 6.96 1.409 -64 0.89									
T-23A Oct-14 20.4 6.94 1.35 9 -99 3.5 T-23A Jun-15 20.4 6.96 1.409 -64 0.89								 	
T-23A Jun-15 20.4 6.96 1.40964 0.89 c									
		1	1			9		 	
T 23A	T-23A	Jun-15	20.4	6.96	1.409			 	0.89 J
µ 1-∠oA ∪u-10 ∠1.9 0.90 1.304 -84 0.85 ⊾	T-23A	Oct-15	21.9	6.90	1.354		-84	 	0.85 J

T-23A										
		May-16	20.3	6.84	1.306	7	-36.7			1.1
	-	Oct-16	18.8	6.86	1.222		-34			1.2
T-23A						1 1				
T-23A		Oct-17	20.3	6.93	1.413	2	115.9			0.53 J
T-23A		Oct-18	20.2	7.26	1.406		-109.8			
T-25A		Sep-07	21.7	7.03	1.59	144	0.71			<5.0
	_					1 1				
T-25A		Oct-07	21.4	6.89	0.14	398	-155		80 X0	24
T-25A		Oct-08	22.0	7.18	0.19	17.2	-129			<5.0
T-25A		Feb-09	18.35	7.20	1.57	16.1	-86			
T-25A		Oct-09	21.61	6.69	1.63	3.4	-101			<5.0
T-25A		Apr-10	18.11	6.80	1.57	107.0	-87			0.8 J
T-25A	1	Oct-10	20.06	6.87	6.54	12.1	-24.6			<1.0
T-25A		Oct-11	20.33	6.74	1.46	1.4	299.5			<1.0
T-25A		Apr-12	19.1	6.76	1.31		-138.2			1.5
T-25A		Oct-12	20.86	6.54	1.37	1.1	-81.2			1.5
T-25A		May-13	21.76	7.29	1.41	150	-101			1.4
T-25A		Oct-13	19.3	6.57	1.252	3	-90.2			<1
T-25A		Apr-14	19.2	6.91	1.341	13	-97			1
										1
T-25A		Oct-14	20.9	6.95	1.266	2	-67.2			1.2
T-25A		Jun-15	20.7	6.82	1.350		-20			0.70 J
T-25A		Oct-15	22.1	6.84	1.272		-35			0.54 J
T-25A		May-16	20.7	6.79	1.355	30	39.7			0.85 J
T-25A		Oct-16	21.4	6.83	1.240		-42			0.75 J
T-25A		Oct-17	21.7	6.89	1.330	5	173.8			0.46 J
						3				0.46 J
T-25A		Oct-18	23.5	7.31	1.351		-125.4			
					Zone R1 Δ	quifer Wells				
T 7D	-1	Ost 00 1	40.0	074			75	4 40	220	7 74
T-7B		Oct-99	19.3	8.74	0.41	0	75	1.19	330	2.1
T-7B		Sep-00	19.9	6.60	1.16	2	-230		350	2.3
T-7B		Nov-00	17.4	6.31	0.33	1	158	2.6	88	43
T-7B		Dec-00	18.4	7.82	0.37	5	-215	10	130	11
T-7B		Feb-01	18.9	7.64	0.91		-163	0.96	160	18
T-7B		Apr-01	19.4	6.92	1.19	30	-125	2.7	360	<2.0
T-7B		Jun-01	19.2	7.33	1.27	0	147	3.3	380	5.3
		1								
T-7B		Aug-01	19.1	6.88	1.17	0	9	2.2	360	5.6
T-7B		Oct-08	19.7	7.67	0.111	6.7				
T-7B		Oct-09	20.06	6.92	1.12	46.8	101			
T-7B		Oct-10	21.21	7.10	1.11	0.0	77.8			
T-7B		Oct-11	21.03	7.15	1.08	9.6	66.7			
T-7B		Oct-12	20.79	7.02	1.09	1.1	131.1		·	<1.0
T-7B				6.83						
		Oct-13	20.4		1.024	3	111.4			
T-7B		Oct-14	20.7	7.19	1.017	1 1	83			
T-7B		Jun-15	22.2	7.26	0.995		14			
	+			7.55						-
T-7B		Oct-15	27.7		0.958		162			
T-7B		May-16	19.2	7.32	1.048	2	73			
T-7B		Oct-16	21.5	7.81	0.851		6.9			
	_					l				1
T-7B		Oct-17	20.0	7.17	1024	1	232.4			
T-7B		Oct-18	23.5	7.79	0.94		94.9			
T-7B	Dup	Oct-18	23.5	7.79	0.94		94.9			
	Dup					ļ			1	
T-2B		Nov-99	21.3	7.01	1.43	0	-6	1.65	470	4.10
T-2B		Oct-00	21	6.92	1.41	11	-18	110	480	<2.0
T-2B		Nov-00	20.6	6.57	1.57	20	-341	240	680	220
	+									
T-2B		Dec-00	19.7	6.52	2.11	75	-239	41	1,000	390
T-2B		Feb-01	20.4	6.85	1.50		-192	6	120	180
T-2B		Apr-01	19.6	6.66	1.55	46	-159	7.1	670	95
						1 1				
T-2B		Jun-01	19.6	6.95	1.47	0	-150	5.6	690	11
T-2B		Aug-01	21.0	6.07	3.41	0	-101	79	2,100	1,300
T-2B		Oct-01	20.2	6.12	3.86	16	-110	36	2,400	1,600
	-	1								
T-2B		Jan-02	19.3	6.45	3.52	56	-104	8.3	1,700	840
T-2B		Apr-02	18.4	6.38	3.69	40	-120	1.9	2,000	960
			19.6	6.55				1.0		900
		Jul-02	19.0	0.00	2.79				1.600	
T-2B		Jul-02			2.79	1	-168	28	1,600 2,100	300
T-2B T-2B		Oct-02	19.8	6.79	2.98	286	-168 -140	28 5.3	2,100	300 140
T-2B T-2B T-2B		Oct-02 Jan-03	19.8 18.5	6.79 6.89	2.98 2.83	286 3	-168 -140 -144	28	2,100 1,700	300 140 13
T-2B T-2B		Oct-02	19.8	6.79	2.98	286	-168 -140	28 5.3	2,100	300 140
T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03	19.8 18.5 19.1	6.79 6.89 6.73	2.98 2.83 2.61	286 3 10	-168 -140 -144 -148	28 5.3 	2,100 1,700 1,400	300 140 13 5.6
T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03	19.8 18.5 19.1 19.4	6.79 6.89 6.73 7.05	2.98 2.83 2.61 2.60	286 3 10 32	-168 -140 -144 -148 -144	28 5.3 	2,100 1,700 1,400 1,600	300 140 13 5.6 8.2
T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03	19.8 18.5 19.1 19.4 20.0	6.79 6.89 6.73 7.05 6.76	2.98 2.83 2.61 2.60 2.60	286 3 10 32 20	-168 -140 -144 -148 -144 -149	28 5.3 	2,100 1,700 1,400 1,600 1,300	300 140 13 5.6 8.2 5.7
T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03	19.8 18.5 19.1 19.4 20.0 19.3	6.79 6.89 6.73 7.05 6.76 6.47	2.98 2.83 2.61 2.60 2.60 2.54	286 3 10 32	-168 -140 -144 -148 -144 -149 -195	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200	300 140 13 5.6 8.2 5.7 6.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04	19.8 18.5 19.1 19.4 20.0 19.3	6.79 6.89 6.73 7.05 6.76 6.47	2.98 2.83 2.61 2.60 2.60 2.54	286 3 10 32 20 0	-168 -140 -144 -148 -144 -149 -195	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200	300 140 13 5.6 8.2 5.7 6.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04	19.8 18.5 19.1 19.4 20.0 19.3	6.79 6.89 6.73 7.05 6.76 6.47 6.62	2.98 2.83 2.61 2.60 2.60 2.54 2.31	286 3 10 32 20 0 3	-168 -140 -144 -148 -144 -149 -195 -191	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200	300 140 13 5.6 8.2 5.7 6.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34	286 3 10 32 20 0 3 0	-168 -140 -144 -148 -144 -149 -195 -191	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02	286 3 10 32 20 0 3 0 3	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34	286 3 10 32 20 0 3 0	-168 -140 -144 -148 -144 -149 -195 -191	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02	286 3 10 32 20 0 3 0 3 20	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83	286 3 10 32 20 0 3 0 3 20 	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200 	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19	2.98 2.83 2.61 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68	286 3 10 32 20 0 3 0 3 20 11	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84	2.98 2.83 2.61 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19	286 3 10 32 20 0 3 0 3 20 11 92	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200 	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84	2.98 2.83 2.61 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19	286 3 10 32 20 0 3 0 3 20 11 92	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56	286 3 10 32 20 0 3 0 3 20 11 92 58	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.0	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58	286 3 10 32 20 0 3 0 3 20 11 92 58 331	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.0 19.7	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.0 19.7	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.0 19.7 20.0	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-08	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.0 19.7 20.0 20.4	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-07 Oct-08 Oct-09	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.0 19.7 20.0 20.4 20.56	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86 6.65	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146 2.03	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144 3.1	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437 -138	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-08	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.0 19.7 20.0 20.4	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-08 Oct-09 10/12/2010(c)	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 20.0 19.0 19.7 20.0 20.4 20.56 20.00	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86 6.65 6.82	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146 2.03 1.53	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144 3.1 7.7	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437 -138 -108	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0 <1.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-08 Oct-09 10/12/2010(c) 10/20/2010(d)	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.7 20.0 20.4 20.56 20.00 19.71	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86 6.65 6.82 6.77	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146 2.03 1.53 1.54	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144 3.1 7.7 170.7	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437 -138 -108 -95	28 5.3	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0 <1.0 57.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-08 Oct-09 10/12/2010(c)	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 20.0 19.0 19.7 20.0 20.4 20.56 20.00	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86 6.65 6.82 6.77	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146 2.03 1.53 1.54	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144 3.1 7.7 170.7	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437 -138 -108	28 5.3 	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0 <1.0 57.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-08 Oct-09 10/12/2010 ^(c) 11/15/2010 ^(a)	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.7 20.0 20.4 20.56 20.00 19.71 19.6	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86 6.65 6.65 6.82 6.77 6.94	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146 2.03 1.53 1.54 1.62	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144 3.1 7.7 170.7 81.4	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437 -138 -108 -95 -118	28 5.3	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0 <1.0 57.0 27.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-07 Oct-08 Oct-09 10/12/2010 ^(c) 11/15/2010 ^(a) May-11	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.0 19.7 20.0 20.4 20.56 20.00 19.71 19.6	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86 6.65 6.82 6.77 6.94	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146 2.03 1.53 1.54 1.62	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144 3.1 7.7 170.7 81.4	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437 -138 -108 -95 -118	28 5.3	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0 <1.0 57.0 27.0 1.4 J
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-07 Oct-08 Oct-09 10/12/2010 ^(c) 11/15/2010 ^(a) May-11 Oct-11	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.7 20.0 20.4 20.56 20.00 19.71 19.6 19.92	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86 6.65 6.82 6.77 6.94	2.98 2.83 2.61 2.60 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146 2.03 1.53 1.54 1.62 1.57	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144 3.1 7.7 170.7 81.4 0.1	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437 -138 -108 -95 -118131.5	28 5.3	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0 <1.0 57.0 27.0 1.4 J <1.0
T-2B T-2B T-2B T-2B T-2B T-2B T-2B T-2B		Oct-02 Jan-03 Apr-03 Jul-03 Oct-03 Jan-04 Apr-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05 Jan-06 Apr-06 Oct-06 Apr-07 Oct-07 Oct-07 Oct-08 Oct-09 10/12/2010 ^(c) 11/15/2010 ^(a) May-11	19.8 18.5 19.1 19.4 20.0 19.3 19.3 20.7 19.4 19.7 20.1 20.1 19.6 20.0 19.0 19.7 20.0 20.4 20.56 20.00 19.71 19.6	6.79 6.89 6.73 7.05 6.76 6.47 6.62 6.54 6.76 6.77 6.54 7.19 6.84 6.99 7.78 6.84 7.11 6.86 6.65 6.82 6.77 6.94	2.98 2.83 2.61 2.60 2.60 2.54 2.31 2.34 2.02 1.96 1.83 1.68 0.19 1.56 1.58 0.13 0.146 2.03 1.53 1.54 1.62	286 3 10 32 20 0 3 0 3 20 11 92 58 331 5.9 144 3.1 7.7 170.7 81.4	-168 -140 -144 -148 -144 -149 -195 -191 -175 -163 -146 -152 -90 -170 -127 -160 -117 -146 -437 -138 -108 -95 -118	28 5.3	2,100 1,700 1,400 1,600 1,300 1,200 1,200 1,200	300 140 13 5.6 8.2 5.7 6.0 11 6.0 <1.0 28 20 <5.0 <1.0 57.0 27.0 1.4 J

T-2B		May-13	20.68	7.18	1.501	123	-111			1.5
T-2B		Oct-13	19.3	6.49	1.449	2	-125.8			<1
T-2B		Apr-14	19.4	6.77	1.723	5	-122			1.9
T-2B		Sep-14	19.91	7.01	1.77	0	-125			
T-5B		Oct-08	20.0	7.69	0.118	5.9	96 90	40 EG	an Ca	
T-5B		Oct-09	20.73	7.11	1.26	0.5	50			
T-5B		Oct-10	21.33	7.11	1.237	0.0	107.1			
T-5B T-5B		Oct-11 Oct-12	22.57 21.05	7.18 7.11	1.21 1.23	3.9 0.0	83.5 76.9		•••	
T-5B		Oct-12	21.05	6.88	1.23	3	95.8			
T-5B		Oct-14	20.7	7.25	1.107	1	149.8			
T-5B		Oct-15	24.2	7.15	1.145		278			
T-5B		Oct-16	21.5	7.56	0.927		9.7			
T-5B		Oct-17	20.8	7.23	1.103	1	217.6			
T-5B		Oct-18	23.6	7.41	1.143		5.9			
T-5B	Dup	Oct-18	23.6	7.41	1.143		5.9			
T-8B		Oct-99	22.1 21.5	5.77 6.82	1.5 1.46	0 10	130 180	1.09 290	500 500	3.1 4.1
T-8B T-8B		Oct-00 Nov-00	20.1	6.60	1.40	1	-264	290 95	570	6.6
T-8B		Dec-00	19.8	7.02	1.59	7	-306	3.5	720	11
T-8B		Feb-01	19.4	7.02	1.336		-186	11	74	<2.0
T-8B		Apr-01	20.0	6.64	1.58	40	-133	140	610	3.6
T-8B		Jun-01	22.8	6.81	1.59	0	-42	3.5	480	<5.0
T-8B		Aug-01	20.4	6.64	1.43	0	-101	16	550	6.3
T-8B		Oct-01	21.5	6.09	1.39	22	77	11	510	<5.0
T-8B		Jan-02	18.8	6.79	1.48	18	-75	33	590	<5.0
T-8B		Mar-02	19.6	6.97	1.46	24	20	23	500	<5.0
T-8B		Jul-02	20.0	6.39	2		322	2000	500	<5.0
T-8B		Oct-02	20.4	6.91	1.41	143	-72	6.1	550	<5.0
T-8B		Jan-03	19.3	6.72	1.4	0	-35			
T-8B		Apr-03	19.6 20.2	6.90 7.48	1.16 1.51	9 26	-83 -40			
T-8B T-8B		Jul-03 Oct-03	20.2	7.48 6.94	1.51 1.5	14	-40 -30			
T-8B		Apr-04	20.5	6.83	1.5	15	-30 -23			
T-8B		Oct-04	23.2	6.15	1.5	36	-161			
T-8B		Apr-05	20.1	6.95	1.41	351	-83			
T-8B		Jul-05	21.7	6.64	1.43		-59		500	8.3
T-8B		Oct-05	21.4	6.84	1.51	0	-96			<5.0
T-8B		Jan-06	19.6	6.95	1.35	93	-114			
T-8B		Apr-06	20.1	6.65	1.56	32	-230			<5.0
T-8B		Jul-06	22.4	6.65	0.15	43	-113			<5.0
T-8B		Oct-06	20.7	6.75	1.38	217	-158			<5.0
T-8B		Jan-07	20.0	6.36	1.65		-76			<5.0
T-8B		Apr-07	24.5	6.62	1.35	9	-56			<5.0
T-8B		Oct-07	21.9	6.68	2.87	186	-112			<5.0
T-8B T-8B		Oct-08 Oct-09	22.0 24.31	6.78 6.42	199 1.55	41	-180 -64			<5.0
T-8B		Oct-10	20.60	6.90	6.2	0.4	-57.0			
T-8B		Oct-10	20.13	6.90	1.515	9.0	59.4		 	
T-8B		Oct-12	21.73	6.77	1.432	15.6	-61.4			<1.0
T-8B		Oct-13	20.6	6.63	1.338	10	-75.6			
T-8B		Oct-14	20.8	7.02	1.339	1	-64.4			
T-8B		Jun-15	22.3	6.94	1.378		-94			
T-8B		Oct-15	24.8	7.27	0.880		-138			
T-8B		May-16	20.2	7.11	1.417	2	-53			
T-8B		Oct-16	21.2	7.38	1.259		-92.1			
T-8B		Oct-17	20.9	7.04	1.347	9	137.6		No. 100	
T-8B		Oct-18	22.4	7.21	1.389		-81.6		m =0	
T-9B T-9B		Oct-08 Oct-09	20.4 20.39	7.57 6.92	0.127 1.43	0 25.8	 -55			
T-9B		Oct-10	21.53	7.04	1.43	0.0	-55 -168.6			
T-9B		Oct-10	20.60	7.04	1.547	0.0	-131.8			
T-9B		Oct-12	20.95	6.94	1.585	1.1	42.8			<1.0
T-9B		Oct-13	25.1	6.76	1.471	1	99.4			
T-9B		Oct-14	19.9	7.09	1.403	1	234			
T-9B		Jun-15	21.8	6.98	1.412		17			
T-9B		Oct-15	24.6	7.20	0.871		143			
T-9B		May-16	27.1	7.16	1.454	1	78			
T-9B		Oct-16	18.6	8.37	0.885		-130.4			
T-9B		Jan-17	20.4	7.17	1.337	1	237.9			
T-9B T-9B		Jan-17	19.84 20.7	7.19 7.12	1.279 1.408	1 1	223.9 172.6			
T-9B		Oct-17 Oct-18	20.7	7.12	1.408		172.6 9			
T-10B		Oct-18	22.0	7.27	1.402	462	15			5.4
T-10B		Jan-06	20.5	6.96	0.98	35	-43			<5.0
T-10B		Apr-06	20.8	6.61	1.59	43	-195			<5.0
T-10B	1	Jul-06	22.9	6.51	0.15	86	30			<5.0
T-10B		Oct-06	23.9	6.75	1.32		4			<5.0
T-10B		Jan-07	20.2	6.39	1.52		8			<5.0
T-10B		May-07	21.2	6.88	0.108	404	-58			
T-10B		Jul-07	22.0	7.51	0.11	216	-23			
T-10B		Oct-07	21.7	7.17	0.15	398	-55		14 00	<5.0
		Oct-08	22.3	7.19	0.273	43.2	-51			
T-10B							. 40		ı	
T-10B		Oct-09	21.62	6.27	1.65	2.3	-49			<5.0
		Oct-09 Oct-10 Oct-11	21.62 20.68 20.60	6.27 6.85 6.76	1.65 5.932 1.49	0.0 0.0	-49 -13.0 234.9		 	<5.0

T-10B	Oct-12	21.52	6.48	1.382	0.0	130.0			<1.0
T-10B	Oct-13	18.6	6.72	1.121	2	184.8			
T-10B	Oct-14	22.8	6.94	1.322	1 1	1.4			
T-10B	Oct-15	24.9	7.55	0.341		-159			
T-10B	Oct-16	20.5	6.71	397		-38.3			
T-10B T-10B	Oct-17	23.6	6.89	1.42 1.068	2	146.2			
T-4B	Oct-18 Oct-99	22.1 20.2	7.43 6.34	1.068	0	-79.8 12	1.29	 420	2.2
T-4B		19.5	7.30	1.27	0	277	1 1		1
T-4B	Apr-03 Jul-03	19.7		1.22		-38			
T-4B			7.86	1.34	3	-36 -61		420	
	Jan-04	19.4	6.86		0			430	
T-4B	Apr-04	20.1	6.95	1.29	0	-40		440	
T-4B	Oct-04	21.1	7.25	1.3					
T-4B	Jan-05	20.0	7.24	1.41		-92			
T-4B	Apr-05	19.7	7.30	1.34	343	-63			
T-4B	Jul-05	20.7	6.98	1.32		11		460	7.6
T-4B	Oct-05	21.1	7.23	1.42	421	-37			<5.0
T-4B	Jan-06	20.5	7.34	1.28	53	-121			
T-4B	Apr-06	20.1	6.91	1.29	22	-161			
T-4B	Oct-06	20.1	7.79	1.34	213	-111			
T-4B	May-07	20.3	7.54	1.05		95			
T-4B	Jul-07	20.8	7.73	0.1	46.5	78			
T-4B	Oct-07	20.2	7.59	0.14	311	-82			<5.0
T-4B	Oct-08	21.9	7.3	187		-144			
T-4B	Oct-09	19.92	6.61	1.57	9.9	-137			
T-4B	Oct-10	21.74	7.23	5.526	6.8	-17.6			
T-4B	Oct-11	22.4	7.24	1.383	0	49.2			
T-4B	Oct-12	21.42	7.07	1.418	5.5	19			
T-4B	Oct-13	20.9	7.09	1.071	1	110			
T-4B	Oct-14	21.6	7.29	1.306	2	-53.3			
T-4B	Jun-15	20.9	7.80	0.829		41			
T-4B	Oct-15	32.2	8.11	0.837		279	<u> </u>		
T-4B	May-16	21.7	7.54	1.286	9	48			
T-4B	Oct-16	23.7	8.15	0.831		-8.3			
T-4B	Oct-17	21.4	7.27	1.331	2	141.7			
T-4B	Oct-18	23.5	7.41	1.334		-70			
T-17B	Jan-06	19.0	7.14	1.18	0	-82			
T-17B	Apr-06	21.0	6.81	1.25	159	-237			
T-17B	Jul-06	23.8	6.93	0.125	95	-106			
T-17B	Oct-06	20.3	7.86	0.819		-113			
T-17B	Jan-07	19.6	6.30	1.28		25			
T-17B	May-07	20.6	7.02	0.1	205	64			
T-17B	Jul-07	21.5	7.57	0.09	255	73			
T-17B	Oct-07	20.8	7.39	0.09	581	-65			<5.0
T-17B									
	Oct-08	22.1	7.5	0.139	35.4 13.5	-186 -36			
T-17B	Oct-09	21.49	6.70	1.47					
T-17B	Oct-10	20.08	7.22	1.321	0.0	-28.8			
T-17B	Oct-11	21.03	7.15	1.079	9.6	66.7			
T-17B	Apr-12	19.08	7.12	1.152		34.3			0.55 J
T-17B	Oct-12	21.15	6.84	1.23	1.4	124.6			<1.0
T-17B	May-13	22	7.2	1.313		-17			11
T-17B	Oct-13	20.2	7.22	1.246	6	-14.6			<1
T-17B	Apr-14	18.4	7.21	1.248	8	-55			<1
T-17B	Oct-14	20	7.29	1.206	4	7.4			1.3
T-17B	Jun-15	22.8	7.13	1.217		-11.2			0.43 J
T-17B	Oct-15	22.2	7.09	1.176		-14			0.38 J
T-17B	May-16	25.0	7.20	1.254	67	12			0.68 J
T-17B	Oct-16	21.1	7.06	1.158		-33.4			0.57 J
T-17B	Oct-17	19.9	7.17	1.200	9	220.6			0.26 J
T-17B	Oct-18	21.6	7.29	1.26		-43.3			
T-18B	May-13	23.04	8.04	0.994		-175		==	
T-18B	Oct-13	22	7.35	0.898	5	-89.5			
T-18B	Oct-14	23.4	7.63	0.846	24	-76.8			
T-18B	Oct-15	20.5	8.25	0.825		122.4			
T-18B	Oct-16	20.1	7.49	0.64		7.9			
T-18B	Oct-17	22.2	7.58	0.784	66	93.6			
T-18B	Oct-18	23.3	7.64	0.853		-98.4			
T-19B	May-13	21.44	6.94	1.095		34			
T-19B	Oct-13	20.6	6.86	1.008	118	93.6			
T-19B	Oct-14	22.7	7.26	1.001	102	90.2			
T-19B	Oct-15	20.2	7.22	1.033		133.6			
T-19B	Oct-16	17.7	9.2	0.999		106.4			
T-19B	Oct-17	19.4	7.16	1.008	519	305.5			
T-19B	Oct-18	19.4	7.3	1.048		205.1			
T-20B	Oct-17	22.3	7.11	1.480	42	139.6		~~	
T-20B	Oct-18	21.6	7.39	1.39		67.5			
T-21B	Oct-17	20.5	7.08	1.267	3	185.6			
T-21B	Oct-18	22.4	7.31	1.311		32.9			
T-21B	Oct-17	21.4	6.96	1.337	4	137.4	 		
T-22B	Oct-18	20.3	7.02	1.391		75.8			
T-23B	Oct-17	25.1	7.02	1.397	177	89.2			
T-23B	Oct-18	22.6	7.06	1.397	1	27	1		1
		22.6	7.33	1.379	102			10 UK	
		ZU.1	1 1.33	1.210	183	128.6			
T-24B	Oct-17				1	n o	1		
	Oct-18	21.2	7.51	1.319	quifer Wells	9.8			

T-2C	Oct-07	21.8	7.06	1.26	9.5	11	2.0	320	
T-2C	Oct-07	21.8	7.06	93	9.5	57			
						20			
T-2C	Oct-09	20.02	7.08	0.96	372				
T-2C	Oct-10	21.94	7.90	0.87	0.0	150.7			
T-2C	Oct-11	20.32	7.50	0.899	0.9	64.3			
T-2C	Oct-12	20.02	7.46	0.929	2.3	57.1			89
T-2C	Oct-13	19.1	7.97	0.817	2.0	147.2			
T-2C	Apr-14	19.5	5.62	0.83	7	121			
T-2C	Sep-14	19.77	7.84	0.91	0	110		w	
T-10C	Oct-08	19.9	7.98	86	0				
T-10C	Oct-09	20.53	7.52	0.914	-4.1	-91			
T-10C	Oct-10	21.44	7.63	0.805	0.0	-117.5			
T-10C	Oct-11	21.71	7.52	0.825	1.3	-192.2			
T-10C	Oct-12	21.22	7.40	0.825	0.0	162.3			
T-10C	Oct-13	20.9	7.71	0.783	7	-50.3			
T-10C	Oct-14	20.7	7.68	0.756	5	77.7			
T-10C	Jun-15	20.8	7.32	0.854		-150			
T-10C	Oct-15	25.2	7.59	0.847		-222			
T-10C	May-16	21	7.46	0.963	17	-41			
T-10C	Oct-16	21.1	7.61	0.783		-32.7			
T-10C	Oct-17	20.3	7.53	0.798	8	162.4			
T-10C	Oct-18	22.8	7.65	0.872		-135.8			
T-11C	Oct-08	20.5	7.87	0.1	14.8				
T-11C	Oct-09	20.31	7.22	0.98	156	71			
T-11C	Oct-10	21.65	7.34	0.974	0.0	78.1			
T-11C	Oct-11	21.25	7.33	0.956	0.0	-8.0			
T-11C	Oct-12	21.66	6.94	0.971	0.0	208.0			
T-11C	Oct-13	20.6	6.93	0.931	3	103.7			
T-11C	Oct-14	22.2	7.38	0.903	1	37.4			
T-11C	Oct-15	22.2	7.83	0.809		114			
T-11C	Oct-16	22.6	7.61	0.775		-21.4			
T-11C	Oct-17	22.7	7.37	0.895	1	90.3			
T-11C	Oct-18	23.7	7.82	0.942		101.6			
T-12C	Oct-08	19.8	10.4	32	19.3	73			
T-12C	Oct-09	19.13	7.70	0.88	1.4	90			
T-12C	Oct-10	20.53	9.44	12.84	1.8	65.0			
T-12C	Oct-11	20.36	8.95	0.255	20.9	-5.1			
T-12C	Oct-12	19.83	9.17	0.253	8.2	4.2			
T-12C	Oct-13	20	7.38	0.858	23	113.8			
T-12C	Oct-14	20.3	7.5	0.827	29	96.3			
T-12C	Oct-15	22.8	8.74	0.586		24			
T-12C	Oct-16	22.2	7.95	0.455		-104.8			
T-12C	Oct-17	22.0	7.49	0.846	18	101.2			
T-12C	Oct-17	21.9	7.49	0.7		57.9			
1-120	1 000-10	۷۱.۵	1.01		l \quifer Well	U, 10	I	1	
T-9C	Oct-08	20.7	8.24	76	0.2				
T-9C	Oct-09	20.7	7.39	0.829	113	-96			
T-9C	Oct-10	24.07	7.55	0.807	0.0	21.3			
T-9C	Oct-10	20.35	7.78	0.765	0.0	-127.6			
T-9C	Oct-12	21.23	7.70	0.777	0.0	48.0			
T-9C	Oct-12	19.4	7.48	0.777	4	122.2			
T-9C	Oct-13	23.1	7.46	0.739	2	14.3			
T-9C	Oct-14 Oct-15	22.6	7.57	0.723		154			
T-9C			7.84	0.746		-25.5			
	Oct-16	20.1			 E				no 30
T-9C	Oct-17	20.1	7.82	0.73	5	160.2		***	
T-9C	Oct-18	22.8	7.62	0.762		45.8			

Notes:

(a) One month post EVO injection (just before pure soybean oil injection)

°C = degree Celsius

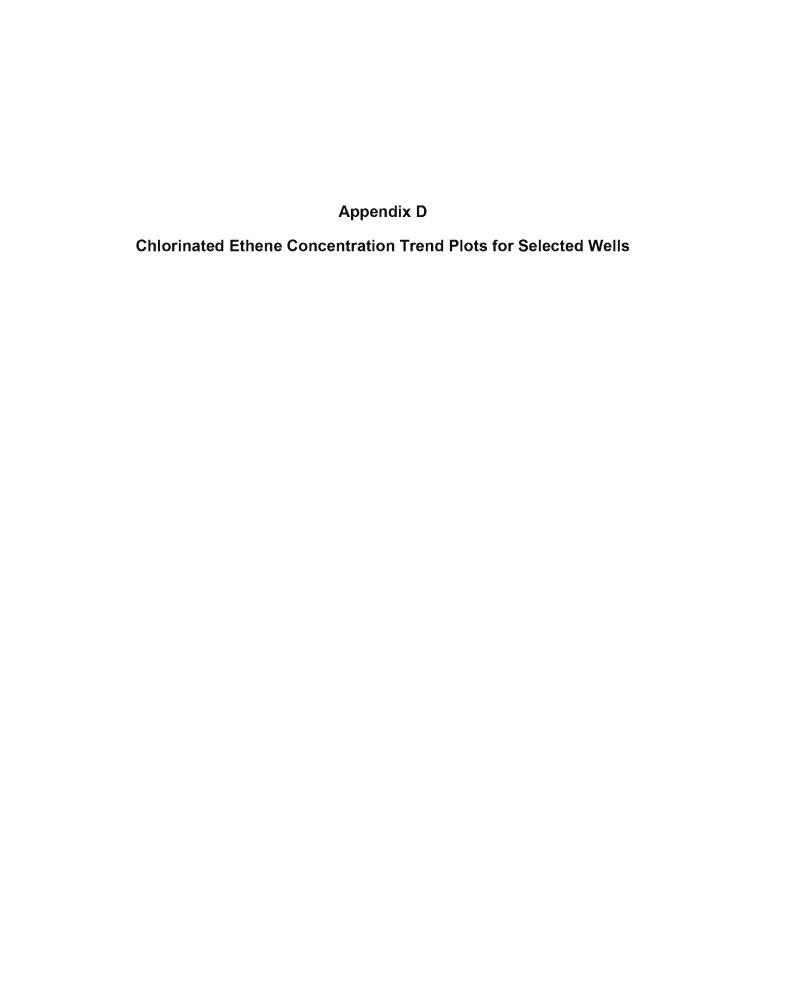
SU = standard units

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit

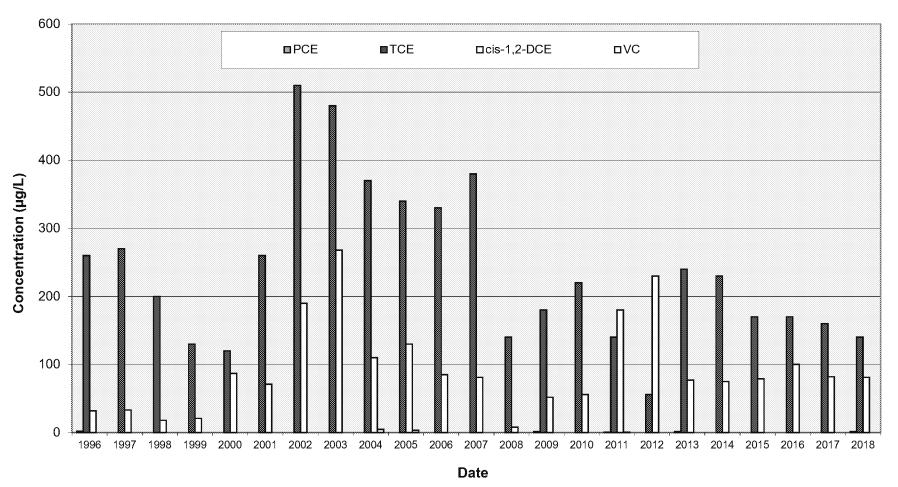
mV = millivolts

nM = nanomolar

mg/L = milligram per liter

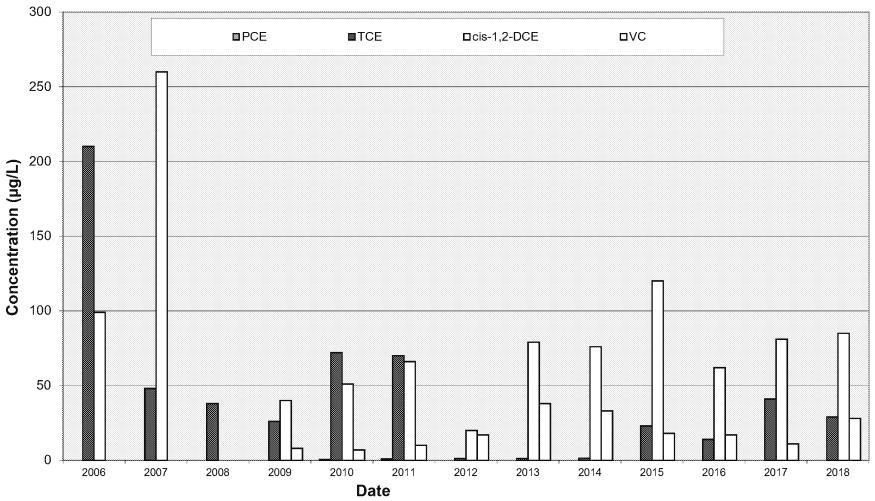

CaCo₃ = calcium carbonate

-- = not analyzed/measured

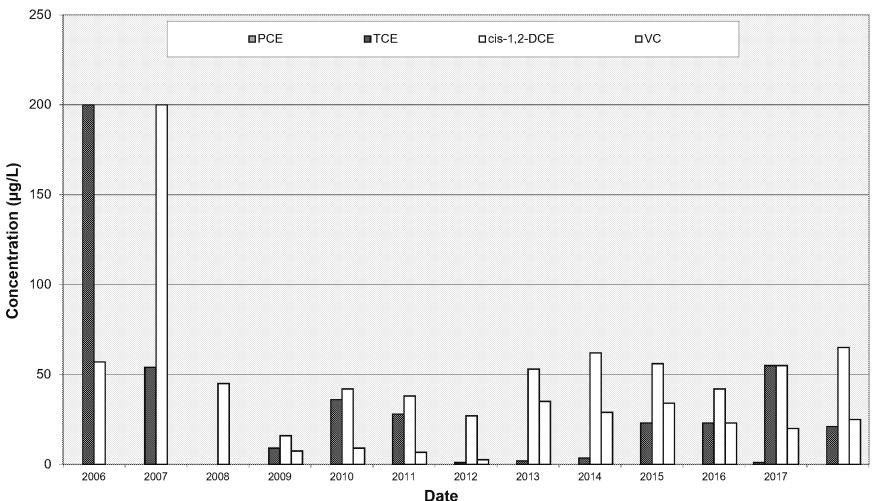

Data prior to 2009 was not collected by AECOM and cannot be verified.

^(b) Immediately after EVO injection

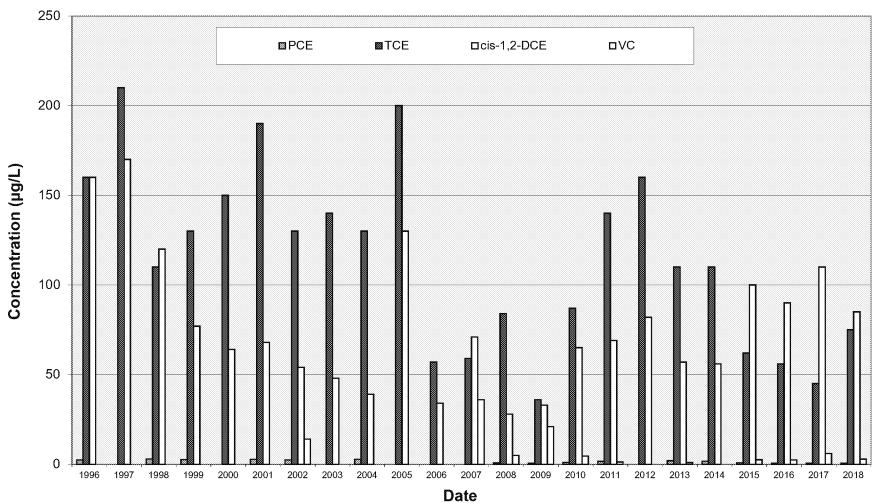
⁽c) Immediately before EVO injection



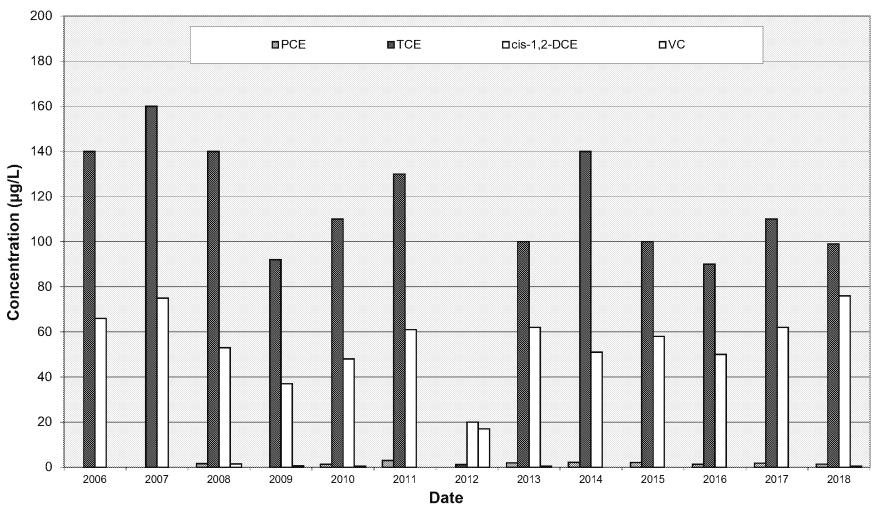
Chlorinated Ethene Concentration Trend Plot for Well T-7A


.Note: Suspension of groundwater extraction at wells Eductor, T-2A, T-8A, and T-9A occurred on April 6, 2001 .Enhanced anaerobic bioremediaiton program initiated in October 2000

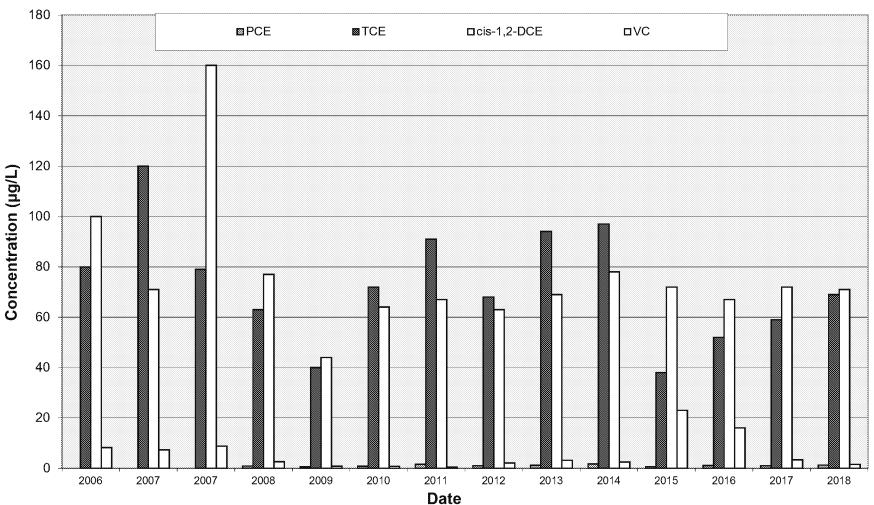
Chlorinated Ethene Concentration Trend Plot for Well T-13A


.Note: Well installed in August 2005. Enhanced anaerobic bioremediation program initiated in October 2000

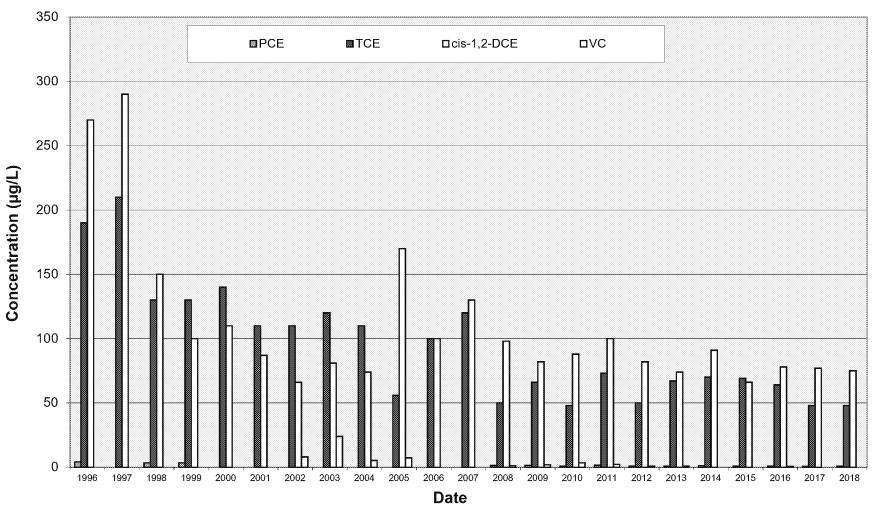
Chlorinated Ethene Concentration Trend Plot for Well T-14A


DateNote: Well installed in August 2005. Enhanced anaerobic bioremediation program initiated in October 2000.

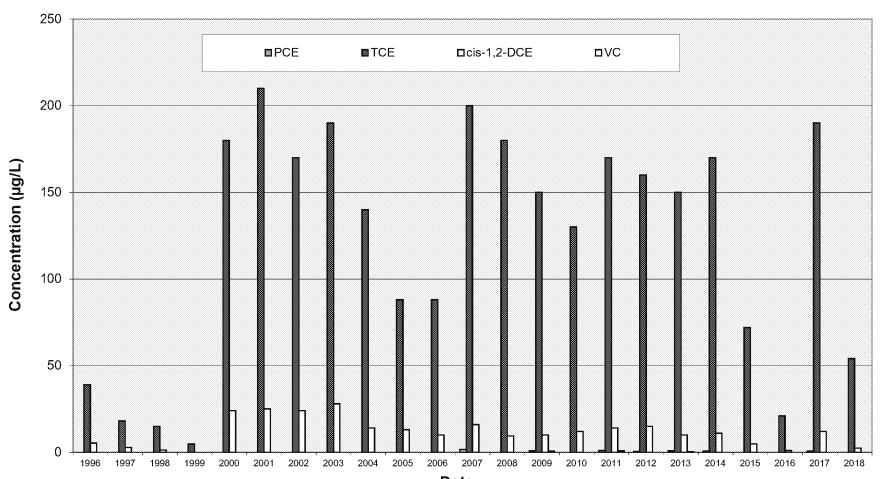
Chlorinated Ethene Concentration Trend Plot for Well T-8A


Note: Suspension of groundwater extraction occurred on April 6, 2001. Enhanced bioremediation program initiated in October 2000.

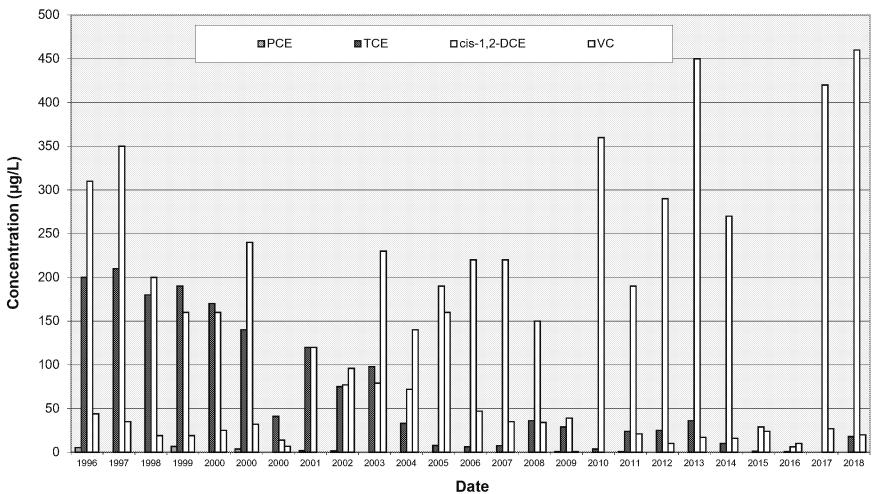
Chlorinated Ethene Concentration Trend Plot for Well T-15A


.Note: Well installed in August 2005. Enhanced anaerobic bioremediation program initiated in October 2000.

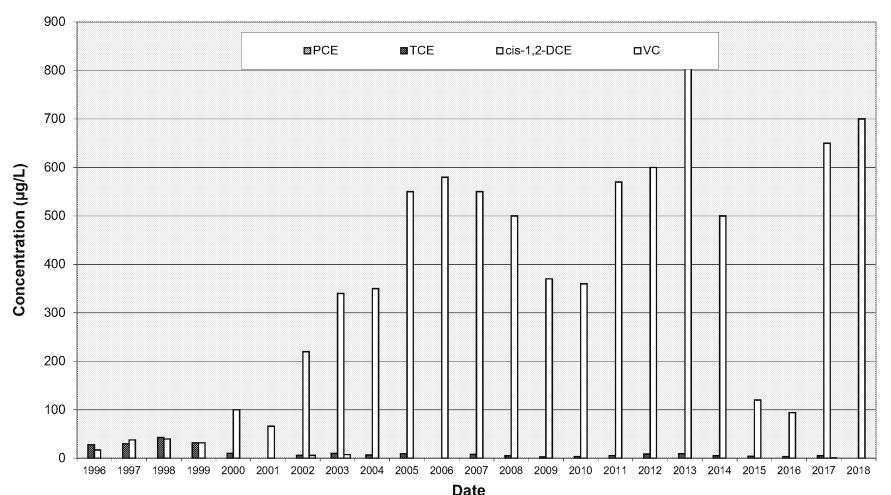
Chlorinated Ethene Concentration Trend Plot for Well T-16A


Note: Well installed in August 2005. Enhanced anaerobic reductive dechlorination program initiated in October 2000.

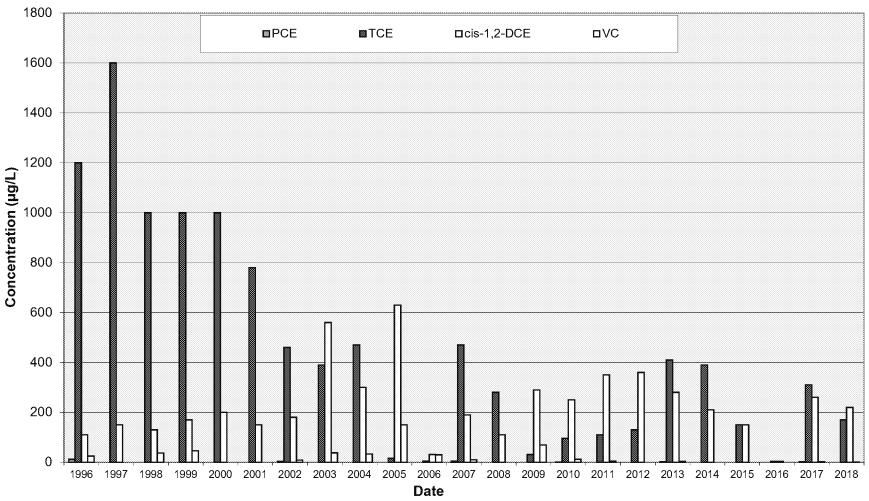
Chlorinated Ethene Concentration Trend Plot for Well T-9A


Note: Suspension of groundwater extraction occurred on April 6, 2001. Enhanced bioremediation program initiated in October 2000.

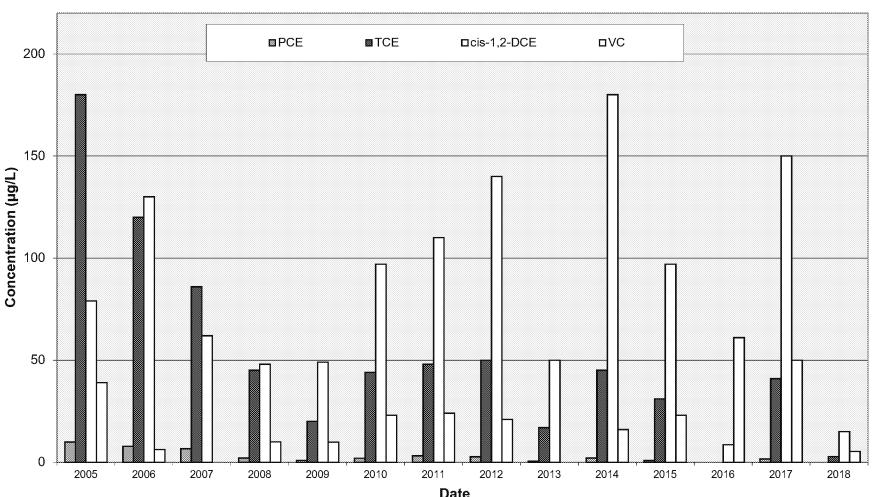
Chlorinated Ethene Concentration Trend Plot for Well T-7B


Note: Suspension of groundwater extraction at wells T-2B and T-8B occurred on August 1, 2000. Enhanced anaerobic bioremediation program initiated in October 2000.

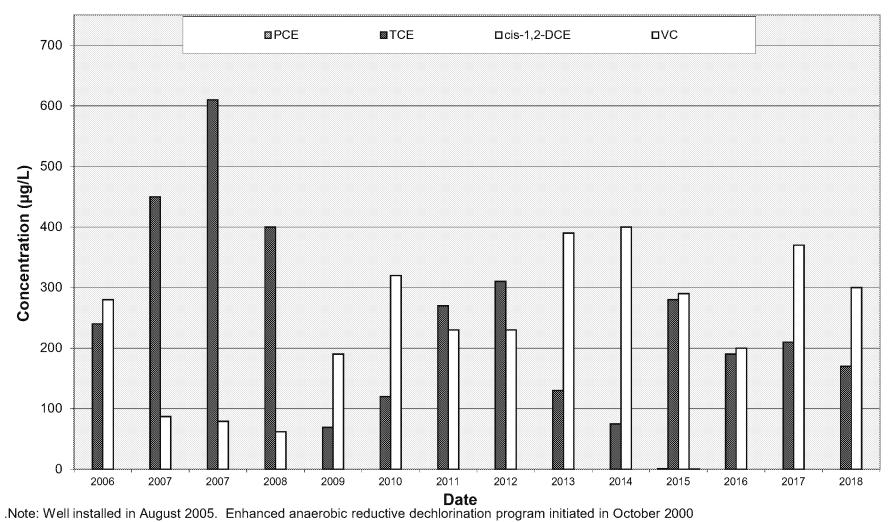
Chlorinated Ethene Concentration Trend Plot for Well T-8B


Note: Suspension of groundwater extraction on August 1, 2000. Enhanced anaerobic bioremediation program initiated in October 2000.

Chlorinated Ethene Concentration Trend Plot for Well T-4B


DateNote: Suspension of groundwater extraction at wells T-2B and T-8B occurred on August 1, 2000. Enhanced anaerobic bioremediation program inititated in October 2000.

Chlorinated Ethene Concentration Trend Plot for Well T-9B


Note: Suspension of groundwater extraction occurred on April 6, 2001. Enhanced anaerobic bioremediation program initiated in October 2000.

Chlorinated Ethene Concentration Trend Plot for Well T-10B

.Note: Enhanced anaerobic reductive dechlorination program initiated in October 2000

Chlorinated Ethene Concentration Trend Plot for Well T-17B

Appendix E
Analytical Laboratory Reports and Chain-of-Custody Forms – 2018

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-89095-1

Client Project/Site: Former TRW Microwave

For: AECOM 999 Town & Country Road 4th Floor Orange, California 92868

Attn: Holly Holbrook

2 G. Ty

Authorized for release by: 10/18/2018 12:16:02 PM Laura Turpen, Project Manager I (916)374-4414

laura.turpen@testamericainc.com

Designee for

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

Review your project results through

Total Access

Have a Question?

The Expert

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	25
Lab Chronicle	26
Certification Summary	28
Method Summary	29
Sample Summary	30
	31
Receipt Checklists	32

TestAmerica Pleasanton 10/18/2018

Definitions/Glossary

Client: AECOM

Project/Site: Former TRW Microwave

TestAmerica Job ID: 720-89095-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description

* LCS or LCSD is outside acceptance limits.

RPD of the LCS and LCSD exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.					
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis					
%R	Percent Recovery					
CFL	Contains Free Liquid					
CNF	Contains No Free Liquid					
DER	Duplicate Error Ratio (normalized absolute difference)					

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: AECOM

Project/Site: Former TRW Microwave

TestAmerica Job ID: 720-89095-1

Job ID: 720-89095-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-89095-1

Comments

No additional comments.

Receipt

The samples were received on 10/11/2018 6:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.3° C.

GC/MS VOA

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 720-253548 recovered above the upper control limit for Carbon tetrachloride and Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: TRIPBLANK-J6038-101118 (720-89095-1).

Method(s) 8260B: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch analytical batch 720-253558 recovered outside control limits for the following analytes: Vinyl chloride, Chloromethane and Trichlorofluoromethane.

Method(s) 8260B: Thelaboratory control sample duplicate (LCSD) for analytical batch 720-253558 recovered outside control limits for the following analytes: 1,2,4-Trichlorobenzene. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260B: The following volatile samples were analyzed with significant headspace in the sample container(s): J6038-T9B-101118 (720-89095-4), J6038-T17B-101118 (720-89095-5), and J6038-T5B-101118-1 (720-89095-6). Significant headspace is defined as a bubble greater than 6 mm in diameter.

Method(s) 8260B: The following sample was collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: J6038-T17B-101118 (720-89095-5). The sample was analyzed within 7 days per EPA recommendation.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Project/Site: Former TRW Microwave

Client Sample ID: TRIPBLANK-J6038-101118

TestAmerica Job ID: 720-89095-1

Lab Sample ID: 720-89095-1

No Detections.

Client Sample ID: J6038-T22B-101118 Lab Sample ID: 720-89095-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac I) Method	Prep Type
1,1-Dichloroethene	0.95	0.50	ug/L	1	8260B	Total/NA
Vinyl chloride	0.69	0.50	ug/L	1	8260B	Total/NA
trans-1,2-Dichloroethene	3.1	0.50	ug/L	1	8260B	Total/NA
cis-1,2-Dichloroethene	120	0.50	ug/L	1	8260B	Total/NA
Trichloroethene	79	0.50	ug/L	1	8260B	Total/NA
Tetrachloroethene	1.3	0.50	ug/L	1	8260B	Total/NA
1,2-Dichlorobenzene	2.1	0.50	ug/L	1	8260B	Total/NA

Client Sample ID: J6038-T24B-101118 Lab Sample ID: 720-89095-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethene	1.6	0.50	ug/L	1	8260B	Total/NA
1,1-Dichloroethane	0.50	0.50	ug/L	1	8260B	Total/NA
Vinyl chloride	3.9	0.50	ug/L	1	8260B	Total/NA
trans-1,2-Dichloroethene	1.1	0.50	ug/L	1	8260B	Total/NA
cis-1,2-Dichloroethene	100	0.50	ug/L	1	8260B	Total/NA
Trichloroethene	48	0.50	ug/L	1	8260B	Total/NA

Client Sample ID: J6038-T9B-101118 Lab Sample ID: 720-89095-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac [Method	Prep Type
1,1-Dichloroethene	1.7	0.50	ug/L		8260B	Total/NA
1,1-Dichloroethane	0.64	0.50	ug/L	1	8260B	Total/NA
Vinyl chloride	1.4 *	0.50	ug/L	1	8260B	Total/NA
trans-1,2-Dichloroethene	2.9	0.50	ug/L	1	8260B	Total/NA
cis-1,2-Dichloroethene	220	5.0	ug/L	10	8260B	Total/NA
Trichloroethene	170	0.50	ug/L	1	8260B	Total/NA
1,2-Dichlorobenzene	0.98	0.50	ug/L	1	8260B	Total/NA

Client Sample ID: J6038-T17B-101118 Lab Sample ID: 720-89095-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	300	5.0	ug/L	10	8260B	Total/NA
Trichloroethene	170	5.0	ug/L	10	8260B	Total/NA
1,1,2-Trichloro-1,2,2-trifluoroethane	7.4	5.0	ug/L	10	8260B	Total/NA

Client Sample ID: J6038-T5B-101118-1 Lab Sample ID: 720-89095-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	39	25	ug/L	50	8260B	Total/NA
Trichloroethene	1200	25	ug/L	50	8260B	Total/NA
1,1,2-Trichloro-1,2,2-trifluoroethane	120	25	ug/L	50	8260B	Total/NA

Client Sample ID: J6038-T5B-101118-2 Lab Sample ID: 720-89095-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Trichloroethene	1200		50		ug/L	100	_	8260B	 Total/NA	

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

10/18/2018

|

Detection Summary

Client: AECOM

Project/Site: Former TRW Microwave

TestAmerica Job ID: 720-89095-1

Client Sample ID: J6038-T5B-101118-2 (Continued)

Lab Sample ID: 720-89095-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac [) Method	Prep Type
1,1,2-Trichloro-1,2,2-trifluoroethane	140	50	ug/L	100	8260B	Total/NA

Client Sample ID: J6038-T10C-101118 Lab Sample ID: 720-89095-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Vinyl chloride	38	25	ug/L	50	8260B	Total/NA
cis-1,2-Dichloroethene	890	25	ug/L	50	8260B	Total/NA
Trichloroethene	260	25	ug/L	50	8260B	Total/NA
1 1 2-Trichloro-1 2 2-trifluoroethane	140	25	ua/l	50	8260B	Total/NA

Client Sample ID: TRIPBLANK-J6038-101118

Date Collected: 10/11/18 07:30 Date Received: 10/11/18 18:30

Client: AECOM

Lab Sample ID: 720-89095-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			10/16/18 21:47	1
1,1-Dichloroethane	ND		0.50		ug/L			10/16/18 21:47	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/16/18 21:47	1
Vinyl chloride	ND		0.50		ug/L			10/16/18 21:47	1
Chloroethane	ND		1.0		ug/L			10/16/18 21:47	1
Trichlorofluoromethane	ND		1.0		ug/L			10/16/18 21:47	1
Methylene Chloride	ND		5.0		ug/L			10/16/18 21:47	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/16/18 21:47	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			10/16/18 21:47	1
Chloroform	ND		1.0		ug/L			10/16/18 21:47	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/16/18 21:47	1
Carbon tetrachloride	ND		0.50		ug/L			10/16/18 21:47	1
1,2-Dichloroethane	ND		0.50		ug/L			10/16/18 21:47	1
Trichloroethene	ND		0.50		ug/L			10/16/18 21:47	1
1,2-Dichloropropane	ND		0.50		ug/L			10/16/18 21:47	1
Dichlorobromomethane	ND		0.50		ug/L			10/16/18 21:47	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/16/18 21:47	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/16/18 21:47	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/16/18 21:47	1
Tetrachloroethene	ND		0.50		ug/L			10/16/18 21:47	1
Chlorodibromomethane	ND		0.50		ug/L			10/16/18 21:47	1
Chlorobenzene	ND		0.50		ug/L			10/16/18 21:47	1
Bromoform	ND		1.0		ug/L			10/16/18 21:47	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/16/18 21:47	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/16/18 21:47	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/16/18 21:47	1
1,2-Dichlorobenzene	ND		0.50		ug/L			10/16/18 21:47	1
Chloromethane	ND		1.0		ug/L			10/16/18 21:47	1
Bromomethane	ND		1.0		ug/L			10/16/18 21:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/16/18 21:47	1
EDB	ND		0.50		ug/L			10/16/18 21:47	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/16/18 21:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130			-		10/16/18 21:47	1
4-Bromofluorobenzene	98		67 - 130					10/16/18 21:47	1
1,2-Dichloroethane-d4 (Surr)	120		72 - 130					10/16/18 21:47	1

•

Client Sample ID: J6038-T22B-101118

Date Collected: 10/11/18 08:15 Date Received: 10/11/18 18:30

Client: AECOM

4-Bromofluorobenzene

1,2-Dichloroethane-d4 (Surr)

Lab Sample ID: 720-89095-2

Matrix: Water

Method: 8260B - Volatile Org Analyte		unds (GC/ Qualifier	MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.95		0.50		ug/L		<u> </u>	10/16/18 21:45	1
1,1-Dichloroethane	ND		0.50		ug/L			10/16/18 21:45	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/16/18 21:45	1
Vinyl chloride	0.69		0.50		ug/L			10/16/18 21:45	1
Chloroethane	ND		1.0		ug/L			10/16/18 21:45	1
Trichlorofluoromethane	ND		1.0		ug/L			10/16/18 21:45	1
Methylene Chloride	ND		5.0		ug/L			10/16/18 21:45	1
trans-1,2-Dichloroethene	3.1		0.50		ug/L			10/16/18 21:45	1
cis-1,2-Dichloroethene	120		0.50		ug/L			10/16/18 21:45	1
Chloroform	ND		1.0		ug/L			10/16/18 21:45	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/16/18 21:45	1
Carbon tetrachloride	ND		0.50		ug/L			10/16/18 21:45	1
1,2-Dichloroethane	ND		0.50		ug/L			10/16/18 21:45	1
Trichloroethene	79		0.50		ug/L			10/16/18 21:45	1
1,2-Dichloropropane	ND		0.50		ug/L			10/16/18 21:45	1
Dichlorobromomethane	ND		0.50		ug/L			10/16/18 21:45	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/16/18 21:45	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/16/18 21:45	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/16/18 21:45	1
Tetrachloroethene	1.3		0.50		ug/L			10/16/18 21:45	1
Chlorodibromomethane	ND		0.50		ug/L			10/16/18 21:45	1
Chlorobenzene	ND		0.50		ug/L			10/16/18 21:45	1
Bromoform	ND		1.0		ug/L			10/16/18 21:45	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/16/18 21:45	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/16/18 21:45	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/16/18 21:45	1
1,2-Dichlorobenzene	2.1		0.50		ug/L			10/16/18 21:45	1
Chloromethane	ND		1.0		ug/L			10/16/18 21:45	1
Bromomethane	ND		1.0		ug/L			10/16/18 21:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/16/18 21:45	1
EDB	ND		0.50		ug/L			10/16/18 21:45	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/16/18 21:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130			-		10/16/18 21:45	1
1 m 41 1									

TestAmerica Pleasanton

10/16/18 21:45

10/16/18 21:45

67 - 130

72 - 130

90

110

Project/Site: Former TRW Microwave

Client: AECOM

Client Sample ID: J6038-T24B-101118

Date Collected: 10/11/18 09:25 Date Received: 10/11/18 18:30

Lab Sample ID: 720-89095-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D I	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.6		0.50	ug/L			10/16/18 22:14	1
1,1-Dichloroethane	0.50		0.50	ug/L			10/16/18 22:14	1
Dichlorodifluoromethane	ND		0.50	ug/L			10/16/18 22:14	1
Vinyl chloride	3.9		0.50	ug/L			10/16/18 22:14	1
Chloroethane	ND		1.0	ug/L			10/16/18 22:14	1
Trichlorofluoromethane	ND		1.0	ug/L			10/16/18 22:14	1
Methylene Chloride	ND		5.0	ug/L			10/16/18 22:14	1
trans-1,2-Dichloroethene	1.1		0.50	ug/L			10/16/18 22:14	1
cis-1,2-Dichloroethene	100		0.50	ug/L			10/16/18 22:14	1
Chloroform	ND		1.0	ug/L			10/16/18 22:14	1
1,1,1-Trichloroethane	ND		0.50	ug/L			10/16/18 22:14	1
Carbon tetrachloride	ND		0.50	ug/L			10/16/18 22:14	1
1,2-Dichloroethane	ND		0.50	ug/L			10/16/18 22:14	1
Trichloroethene	48		0.50	ug/L			10/16/18 22:14	1
1,2-Dichloropropane	ND		0.50	ug/L			10/16/18 22:14	1
Dichlorobromomethane	ND		0.50	ug/L			10/16/18 22:14	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/16/18 22:14	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/16/18 22:14	1
1,1,2-Trichloroethane	ND		0.50	ug/L			10/16/18 22:14	1
Tetrachloroethene	ND		0.50	ug/L			10/16/18 22:14	1
Chlorodibromomethane	ND		0.50	ug/L			10/16/18 22:14	1
Chlorobenzene	ND		0.50	ug/L			10/16/18 22:14	1
Bromoform	ND		1.0	ug/L			10/16/18 22:14	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			10/16/18 22:14	1
1,3-Dichlorobenzene	ND		0.50	ug/L			10/16/18 22:14	1
1,4-Dichlorobenzene	ND		0.50	ug/L			10/16/18 22:14	1
1,2-Dichlorobenzene	ND		0.50	ug/L			10/16/18 22:14	1
Chloromethane	ND		1.0	ug/L			10/16/18 22:14	
Bromomethane	ND		1.0	ug/L			10/16/18 22:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			10/16/18 22:14	1
EDB	ND		0.50	ug/L			10/16/18 22:14	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/16/18 22:14	1
Surrogate	%Recovery	Qualifier	Limits		ı	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		70 - 130				10/16/18 22:14	-
4-Bromofluorobenzene	93		67 - 130				10/16/18 22:14	7
1,2-Dichloroethane-d4 (Surr)	105		72 - 130				10/16/18 22:14	1

Client: AECOM

Project/Site: Former TRW Microwave

Client Sample ID: J6038-T9B-101118

Date Collected: 10/11/18 11:00 Date Received: 10/11/18 18:30 Lab Sample ID: 720-89095-4

. Matrix: Water

Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.7	0.50	ug/L			10/17/18 02:53	1
1,1-Dichloroethane	0.64	0.50	ug/L			10/17/18 02:53	1
Dichlorodifluoromethane	ND	0.50	ug/L			10/17/18 02:53	1
Vinyl chloride	1.4 *	0.50	ug/L			10/17/18 02:53	1
Chloroethane	ND	1.0	ug/L			10/17/18 02:53	1
Trichlorofluoromethane	ND *	1.0	ug/L			10/17/18 02:53	1
Methylene Chloride	ND	5.0	ug/L			10/17/18 02:53	1
trans-1,2-Dichloroethene	2.9	0.50	ug/L			10/17/18 02:53	1
cis-1,2-Dichloroethene	220	5.0	ug/L			10/17/18 21:21	10
Chloroform	ND	1.0	ug/L			10/17/18 02:53	1
1,1,1-Trichloroethane	ND	0.50	ug/L			10/17/18 02:53	1
Carbon tetrachloride	ND	0.50	ug/L			10/17/18 02:53	1
1,2-Dichloroethane	ND	0.50	ug/L			10/17/18 02:53	1
Trichloroethene	170	0.50	ug/L			10/17/18 02:53	1
1,2-Dichloropropane	ND	0.50	ug/L			10/17/18 02:53	1
Dichlorobromomethane	ND	0.50	ug/L			10/17/18 02:53	1
trans-1,3-Dichloropropene	ND	0.50	ug/L			10/17/18 02:53	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			10/17/18 02:53	1
1,1,2-Trichloroethane	ND	0.50	ug/L			10/17/18 02:53	1
Tetrachloroethene	ND	0.50	ug/L			10/17/18 02:53	1
Chlorodibromomethane	ND	0.50	ug/L			10/17/18 02:53	1
Chlorobenzene	ND	0.50	ug/L			10/17/18 02:53	1
Bromoform	ND	1.0	ug/L			10/17/18 02:53	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			10/17/18 02:53	1
1,3-Dichlorobenzene	ND	0.50	ug/L			10/17/18 02:53	1
1,4-Dichlorobenzene	ND	0.50	ug/L			10/17/18 02:53	1
1,2-Dichlorobenzene	0.98	0.50	ug/L			10/17/18 02:53	1
Chloromethane	ND *	1.0	ug/L			10/17/18 02:53	1
Bromomethane	ND	1.0	ug/L			10/17/18 02:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			10/17/18 02:53	1
EDB	ND	0.50	ug/L			10/17/18 02:53	1
1,2,4-Trichlorobenzene	ND *	1.0	ug/L			10/17/18 02:53	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		70 - 130		10/17/18 02:53	1
Toluene-d8 (Surr)	96		70 - 130		10/17/18 21:21	10
4-Bromofluorobenzene	76		67 - 130		10/17/18 02:53	1
4-Bromofluorobenzene	84		67 - 130		10/17/18 21:21	10
1,2-Dichloroethane-d4 (Surr)	110		72 - 130		10/17/18 02:53	1
1,2-Dichloroethane-d4 (Surr)	112		72 - 130		10/17/18 21:21	10

Client Sample ID: J6038-T17B-101118

Date Collected: 10/11/18 12:00 Date Received: 10/11/18 18:30 Lab Sample ID: 720-89095-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		5.0	ug/L			10/16/18 22:43	10
1,1-Dichloroethane	ND		5.0	ug/L			10/16/18 22:43	10
Dichlorodifluoromethane	ND		5.0	ug/L			10/16/18 22:43	10
Vinyl chloride	ND		5.0	ug/L			10/16/18 22:43	10
Chloroethane	ND		10	ug/L			10/16/18 22:43	10
Trichlorofluoromethane	ND		10	ug/L			10/16/18 22:43	10
Methylene Chloride	ND		50	ug/L			10/16/18 22:43	10
trans-1,2-Dichloroethene	ND		5.0	ug/L			10/16/18 22:43	10
cis-1,2-Dichloroethene	300		5.0	ug/L			10/16/18 22:43	10
Chloroform	ND		10	ug/L			10/16/18 22:43	10
1,1,1-Trichloroethane	ND		5.0	ug/L			10/16/18 22:43	10
Carbon tetrachloride	ND		5.0	ug/L			10/16/18 22:43	10
1,2-Dichloroethane	ND		5.0	ug/L			10/16/18 22:43	10
Trichloroethene	170		5.0	ug/L			10/16/18 22:43	10
1,2-Dichloropropane	ND		5.0	ug/L			10/16/18 22:43	10
Dichlorobromomethane	ND		5.0	ug/L			10/16/18 22:43	10
trans-1,3-Dichloropropene	ND		5.0	ug/L			10/16/18 22:43	10
cis-1,3-Dichloropropene	ND		5.0	ug/L			10/16/18 22:43	10
1,1,2-Trichloroethane	ND		5.0	ug/L			10/16/18 22:43	10
Tetrachloroethene	ND		5.0	ug/L			10/16/18 22:43	10
Chlorodibromomethane	ND		5.0	ug/L			10/16/18 22:43	10
Chlorobenzene	ND		5.0	ug/L			10/16/18 22:43	10
Bromoform	ND		10	ug/L			10/16/18 22:43	10
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L			10/16/18 22:43	10
1,3-Dichlorobenzene	ND		5.0	ug/L			10/16/18 22:43	10
1,4-Dichlorobenzene	ND		5.0	ug/L			10/16/18 22:43	10
1,2-Dichlorobenzene	ND		5.0	ug/L			10/16/18 22:43	10
Chloromethane	ND		10	ug/L			10/16/18 22:43	10
Bromomethane	ND		10	ug/L			10/16/18 22:43	10
1,1,2-Trichloro-1,2,2-trifluoroetha ne	7.4		5.0	ug/L			10/16/18 22:43	10
EDB	ND		5.0	ug/L			10/16/18 22:43	10
1,2,4-Trichlorobenzene	ND		10	ug/L			10/16/18 22:43	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	100		70 - 130		_		10/16/18 22:43	10
4-Bromofluorobenzene	87		67 - 130				10/16/18 22:43	10
1,2-Dichloroethane-d4 (Surr)	104		72 - 130				10/16/18 22:43	10

Project/Site: Former TRW Microwave

Client Sample ID: J6038-T5B-101118-1

Date Collected: 10/11/18 13:10 Date Received: 10/11/18 18:30

Client: AECOM

Lab Sample ID: 720-89095-6

Matrix: Water

Analyte		Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	ND		25	uç	g/L			10/16/18 23:12	50
1,1-Dichloroethane	ND		25	uç	g/L			10/16/18 23:12	50
Dichlorodifluoromethane	ND		25	uç	g/L			10/16/18 23:12	50
Vinyl chloride	ND		25	u(g/L			10/16/18 23:12	50
Chloroethane	ND		50	uç	g/L			10/16/18 23:12	50
Trichlorofluoromethane	ND		50	u	g/L			10/16/18 23:12	50
Methylene Chloride	ND		250	uç	g/L			10/16/18 23:12	50
trans-1,2-Dichloroethene	ND		25	uç	g/L			10/16/18 23:12	50
cis-1,2-Dichloroethene	39		25	uç	g/L			10/16/18 23:12	50
Chloroform	ND		50	uç	g/L			10/16/18 23:12	50
1,1,1-Trichloroethane	ND		25	uç	g/L			10/16/18 23:12	50
Carbon tetrachloride	ND		25	uç	g/L			10/16/18 23:12	50
1,2-Dichloroethane	ND		25	u(g/L			10/16/18 23:12	50
Trichloroethene	1200		25	uç	g/L			10/16/18 23:12	50
1,2-Dichloropropane	ND		25	uç	g/L			10/16/18 23:12	50
Dichlorobromomethane	ND		25	uç	g/L			10/16/18 23:12	50
trans-1,3-Dichloropropene	ND		25	uç	g/L			10/16/18 23:12	50
cis-1,3-Dichloropropene	ND		25	uç	g/L			10/16/18 23:12	50
1,1,2-Trichloroethane	ND		25	u(g/L			10/16/18 23:12	5
Tetrachloroethene	ND		25	uç	g/L			10/16/18 23:12	50
Chlorodibromomethane	ND		25	uç	g/L			10/16/18 23:12	50
Chlorobenzene	ND		25	u(g/L			10/16/18 23:12	50
Bromoform	ND		50	uç	g/L			10/16/18 23:12	50
1,1,2,2-Tetrachloroethane	ND		25	uç	g/L			10/16/18 23:12	50
1,3-Dichlorobenzene	ND		25	u(g/L			10/16/18 23:12	50
1,4-Dichlorobenzene	ND		25	uç	g/L			10/16/18 23:12	50
1,2-Dichlorobenzene	ND		25	uç	g/L			10/16/18 23:12	50
Chloromethane	ND		50	uç	g/L			10/16/18 23:12	50
Bromomethane	ND		50	uç	g/L			10/16/18 23:12	50
1,1,2-Trichloro-1,2,2-trifluoroetha	120		25	uç	g/L			10/16/18 23:12	50
ne EDB	ND		25	uç	g/L			10/16/18 23:12	5
1,2,4-Trichlorobenzene	ND		50	uç	g/L			10/16/18 23:12	56
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	103		70 - 130			-		10/16/18 23:12	5
4-Bromofluorobenzene	88		67 - 130					10/16/18 23:12	5
1,2-Dichloroethane-d4 (Surr)	101		72 - 130					10/16/18 23:12	5

Client Sample ID: J6038-T5B-101118-2

Date Collected: 10/11/18 13:15 Date Received: 10/11/18 18:30 Lab Sample ID: 720-89095-7

Matrix: Water

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		50		ug/L			10/16/18 23:41	100
1,1-Dichloroethane	ND		50		ug/L			10/16/18 23:41	100
Dichlorodifluoromethane	ND		50		ug/L			10/16/18 23:41	100
Vinyl chloride	ND		50		ug/L			10/16/18 23:41	100
Chloroethane	ND		100		ug/L			10/16/18 23:41	100
Trichlorofluoromethane	ND		100		ug/L			10/16/18 23:41	100
Methylene Chloride	ND		500		ug/L			10/16/18 23:41	100
trans-1,2-Dichloroethene	ND		50		ug/L			10/16/18 23:41	100
cis-1,2-Dichloroethene	ND		50		ug/L			10/16/18 23:41	100
Chloroform	ND		100		ug/L			10/16/18 23:41	100
1,1,1-Trichloroethane	ND		50		ug/L			10/16/18 23:41	100
Carbon tetrachloride	ND		50		ug/L			10/16/18 23:41	100
1,2-Dichloroethane	ND		50		ug/L			10/16/18 23:41	100
Trichloroethene	1200		50		ug/L			10/16/18 23:41	100
1,2-Dichloropropane	ND		50		ug/L			10/16/18 23:41	100
Dichlorobromomethane	ND		50		ug/L			10/16/18 23:41	100
trans-1,3-Dichloropropene	ND		50		ug/L			10/16/18 23:41	100
cis-1,3-Dichloropropene	ND		50		ug/L			10/16/18 23:41	100
1,1,2-Trichloroethane	ND		50		ug/L			10/16/18 23:41	100
Tetrachloroethene	ND		50		ug/L			10/16/18 23:41	100
Chlorodibromomethane	ND		50		ug/L			10/16/18 23:41	100
Chlorobenzene	ND		50		ug/L			10/16/18 23:41	100
Bromoform	ND		100		ug/L			10/16/18 23:41	100
1,1,2,2-Tetrachloroethane	ND		50		ug/L			10/16/18 23:41	100
1,3-Dichlorobenzene	ND		50		ug/L			10/16/18 23:41	100
1,4-Dichlorobenzene	ND		50		ug/L			10/16/18 23:41	100
1,2-Dichlorobenzene	ND		50		ug/L			10/16/18 23:41	100
Chloromethane	ND		100		ug/L			10/16/18 23:41	100
Bromomethane	ND		100		ug/L			10/16/18 23:41	100
1,1,2-Trichloro-1,2,2-trifluoroetha	140		50		ug/L			10/16/18 23:41	100
ne					_				
EDB	ND		50		ug/L			10/16/18 23:41	100
1,2,4-Trichlorobenzene	ND		100		ug/L			10/16/18 23:41	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		70 - 130			-		10/16/18 23:41	100
4-Bromofluorobenzene	90		67 - 130					10/16/18 23:41	100
1,2-Dichloroethane-d4 (Surr)	107		72 - 130					10/16/18 23:41	100

ED_013213_00000989-00204

Lab Sample ID: 720-89095-8

Matrix: Water

Client Sample ID: J6038-T10C-101118

Date Collected: 10/11/18 15:05 Date Received: 10/11/18 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		25		ug/L			10/17/18 00:10	50
1,1-Dichloroethane	ND		25		ug/L			10/17/18 00:10	50
Dichlorodifluoromethane	ND		25		ug/L			10/17/18 00:10	50
Vinyl chloride	38		25		ug/L			10/17/18 00:10	50
Chloroethane	ND		50		ug/L			10/17/18 00:10	50
Trichlorofluoromethane	ND		50		ug/L			10/17/18 00:10	50
Methylene Chloride	ND		250		ug/L			10/17/18 00:10	50
trans-1,2-Dichloroethene	ND		25		ug/L			10/17/18 00:10	50
cis-1,2-Dichloroethene	890		25		ug/L			10/17/18 00:10	50
Chloroform	ND		50		ug/L			10/17/18 00:10	50
1,1,1-Trichloroethane	ND		25		ug/L			10/17/18 00:10	50
Carbon tetrachloride	ND		25		ug/L			10/17/18 00:10	50
1,2-Dichloroethane	ND		25		ug/L			10/17/18 00:10	50
Trichloroethene	260		25		ug/L			10/17/18 00:10	50
1,2-Dichloropropane	ND		25		ug/L			10/17/18 00:10	50
Dichlorobromomethane	ND		25		ug/L			10/17/18 00:10	50
trans-1,3-Dichloropropene	ND		25		ug/L			10/17/18 00:10	50
cis-1,3-Dichloropropene	ND		25		ug/L			10/17/18 00:10	50
1,1,2-Trichloroethane	ND		25		ug/L			10/17/18 00:10	50
Tetrachloroethene	ND		25		ug/L			10/17/18 00:10	50
Chlorodibromomethane	ND		25		ug/L			10/17/18 00:10	50
Chlorobenzene	ND		25		ug/L			10/17/18 00:10	50
Bromoform	ND		50		ug/L			10/17/18 00:10	50
1,1,2,2-Tetrachloroethane	ND		25		ug/L			10/17/18 00:10	50
1,3-Dichlorobenzene	ND		25		ug/L			10/17/18 00:10	50
1,4-Dichlorobenzene	ND		25		ug/L			10/17/18 00:10	50
1,2-Dichlorobenzene	ND		25		ug/L			10/17/18 00:10	50
Chloromethane	ND		50		ug/L			10/17/18 00:10	50
Bromomethane	ND		50		ug/L			10/17/18 00:10	50
1,1,2-Trichloro-1,2,2-trifluoroetha	140		25		ug/L			10/17/18 00:10	50
ne									
EDB	ND		25		ug/L			10/17/18 00:10	50
1,2,4-Trichlorobenzene	ND		50		ug/L			10/17/18 00:10	50
Surrogate	•	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		70 - 130			-		10/17/18 00:10	50
4-Bromofluorobenzene	86		67 ₋ 130					10/17/18 00:10	50
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					10/17/18 00:10	50

Surrogate Summary

Client: AECOM

Project/Site: Former TRW Microwave

TestAmerica Job ID: 720-89095-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Recovery (Acceptance Limits)
		TOL	BFB	DCA	
Lab Sample ID	Client Sample ID	(70-130)	(67-130)	(72-130)	
720-89095-1	TRIPBLANK-J6038-101118	96	98	120	
720-89095-2	J6038-T22B-101118	100	90	110	
720-89095-3	J6038-T24B-101118	104	93	105	
720-89095-4	J6038-T9B-101118	93	76	110	
720-89095-4	J6038-T9B-101118	96	84	112	
720-89095-5	J6038-T17B-101118	100	87	104	
720-89095-6	J6038-T5B-101118-1	103	88	101	
720-89095-7	J6038-T5B-101118-2	103	90	107	
720-89095-8	J6038-T10C-101118	103	86	100	
LCS 720-253548/5	Lab Control Sample	102	99	122	
LCS 720-253550/5	Lab Control Sample	101	99	98	
LCS 720-253558/5	Lab Control Sample	92	101	105	
LCS 720-253630/5	Lab Control Sample	113	101	101	
LCSD 720-253548/6	Lab Control Sample Dup	101	99	119	
LCSD 720-253550/6	Lab Control Sample Dup	103	99	96	
LCSD 720-253558/6	Lab Control Sample Dup	99	111	99	
LCSD 720-253630/6	Lab Control Sample Dup	101	103	100	
MB 720-253548/4	Method Blank	99	97	121	
MB 720-253550/4	Method Blank	102	89	101	
MB 720-253558/4	Method Blank	94	87	105	
MB 720-253630/4	Method Blank	93	83	107	

Surrogate Legend

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene

DCA = 1,2-Dichloroethane-d4 (Surr)

Client: AECOM Project/Site: Former TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 720-253548/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 253548

ritary and macori, move-ro	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50	ug/L			10/16/18 18:42	1
1,1-Dichloroethane	ND		0.50	ug/L			10/16/18 18:42	1
Dichlorodifluoromethane	ND		0.50	ug/L			10/16/18 18:42	1
Vinyl chloride	ND		0.50	ug/L			10/16/18 18:42	1
Chloroethane	ND		1.0	ug/L			10/16/18 18:42	1
Trichlorofluoromethane	ND		1.0	ug/L			10/16/18 18:42	1
Methylene Chloride	ND		5.0	ug/L			10/16/18 18:42	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/16/18 18:42	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			10/16/18 18:42	1
Chloroform	ND		1.0	ug/L			10/16/18 18:42	1
1,1,1-Trichloroethane	ND		0.50	ug/L			10/16/18 18:42	1
Carbon tetrachloride	ND		0.50	ug/L			10/16/18 18:42	1
1,2-Dichloroethane	ND		0.50	ug/L			10/16/18 18:42	1
Trichloroethene	ND		0.50	ug/L			10/16/18 18:42	1
1,2-Dichloropropane	ND		0.50	ug/L			10/16/18 18:42	1
Dichlorobromomethane	ND		0.50	ug/L			10/16/18 18:42	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/16/18 18:42	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/16/18 18:42	1
1,1,2-Trichloroethane	ND		0.50	ug/L			10/16/18 18:42	1
Tetrachloroethene	ND		0.50	ug/L			10/16/18 18:42	1
Chlorodibromomethane	ND		0.50	ug/L			10/16/18 18:42	1
Chlorobenzene	ND		0.50	ug/L			10/16/18 18:42	1
Bromoform	ND		1.0	ug/L			10/16/18 18:42	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			10/16/18 18:42	1
1,3-Dichlorobenzene	ND		0.50	ug/L			10/16/18 18:42	1
1,4-Dichlorobenzene	ND		0.50	ug/L			10/16/18 18:42	1
1,2-Dichlorobenzene	ND		0.50	ug/L			10/16/18 18:42	1
Chloromethane	ND		1.0	ug/L			10/16/18 18:42	1
Bromomethane	ND		1.0	ug/L			10/16/18 18:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			10/16/18 18:42	1
EDB	ND		0.50	ug/L			10/16/18 18:42	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/16/18 18:42	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 99 70 - 130 10/16/18 18:42 97 67 - 130 10/16/18 18:42 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) 121 72 - 130 10/16/18 18:42

Lab Sample ID: LCS 720-253548/5

Matrix: Water

Analysis Ratch: 253548

Milalysis Datcii. 200040								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	25.0	23.6		ug/L		94	69 - 119	
1,1-Dichloroethane	25.0	23.1		ug/L		92	77 - 119	
Dichlorodifluoromethane	25.0	33.2		ug/L		133	21 - 150	
Vinyl chloride	25.0	22.6		ug/L		90	58 - 138	
Chloroethane	25.0	21.5		ug/L		86	70 - 131	

TestAmerica Pleasanton

10/18/2018

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 16 of 32

ED_013213_00000989-00207

Client: AECOM

Project/Site: Former TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-253548/5

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 253548 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Trichlorofluoromethane 25.0 31.5 ug/L 126 75 - 141 Methylene Chloride 25.0 22.6 ug/L 90 75 - 117 25.0 22.9 ug/L 92 79 - 117 trans-1,2-Dichloroethene cis-1,2-Dichloroethene 25.0 24.8 ug/L 99 77 - 117 Chloroform 25.0 27.6 ug/L 110 82 - 119 1,1,1-Trichloroethane 25.0 30.1 120 74 - 130 ug/L Carbon tetrachloride 25.0 32.5 ug/L 130 72 - 142 1.2-Dichloroethane 25.0 30.4 ug/L 121 73 - 122 109 Trichloroethene 25.0 27.3 ug/L 80 - 123 87 79 - 119 1,2-Dichloropropane 25.0 21.8 ug/L Dichlorobromomethane 25.0 29.3 ug/L 117 81 - 130 trans-1,3-Dichloropropene 25.0 28.1 ug/L 112 76 - 122 cis-1,3-Dichloropropene 25.0 26.6 106 82 - 119 ug/L 25.0 23.5 94 80 - 117 1,1,2-Trichloroethane ug/L Tetrachloroethene 120 81 - 130 25.0 29.9 ug/L Chlorodibromomethane 25.0 30.6 ug/L 123 77 - 133Chlorobenzene 25.0 24.5 ug/L 98 76 - 116 Bromoform 25.0 29.4 ug/L 118 75 - 127 1,1,2,2-Tetrachloroethane 25.0 18.5 74 70 - 115 ug/L 1,3-Dichlorobenzene 25.0 24.9 99 76-116 ug/L 25.0 1,4-Dichlorobenzene ug/L 99 76 - 116 247 1,2-Dichlorobenzene 25.0 25.7 ug/L 103 77 - 117 49 _ 134 Chloromethane 25.0 21.8 ug/L 87 25.0 70 - 132 Bromomethane 26.4 ug/L 106 25.0 28.3 ug/L 113 70 - 133 1,1,2-Trichloro-1,2,2-trifluoroetha ne

25.0

25.0

 Surrogate
 %Recovery
 Qualifier
 Limits

 Toluene-d8 (Surr)
 102
 70 - 130

 4-Bromofluorobenzene
 99
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 122
 72 - 130

Lab Sample ID: LCSD 720-253548/6 Client Sample ID: Lab Control Sample Dup
Matrix: Water Prep Type: Total/NA

25.9

27.3

ug/L

ug/L

104

109

80 - 121

78 - 120

Analysis Batch: 253548

EDB

1,2,4-Trichlorobenzene

Milalysis Datcii. 200040									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	25.0	24.8		ug/L		99	69 - 119	5	20
1,1-Dichloroethane	25.0	23.2		ug/L		93	77 - 119	0	20
Dichlorodifluoromethane	25.0	35.2		ug/L		141	21 - 150	6	20
Vinyl chloride	25.0	24.3		ug/L		97	58 - 138	8	20
Chloroethane	25.0	22.5		ug/L		90	70 - 131	5	20
Trichlorofluoromethane	25.0	31.9		ug/L		128	75 - 141	1	20
Methylene Chloride	25.0	22.7		ug/L		91	75 - 117	0	20
trans-1,2-Dichloroethene	25.0	23.7		ug/L		95	79 - 117	3	20
cis-1,2-Dichloroethene	25.0	24.6		ug/L		98	77 - 117	1	20

Page 17 of 32

TestAmerica Pleasanton

10/18/2018

(•)

Client: AECOM

Project/Site: Former TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-253548/6 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 253548 LCSD LCSD **RPD** Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloroform 25.0 27.1 ug/L 108 82 - 119 2 20 1.1.1-Trichloroethane 25.0 30.1 ug/L 121 74 - 130 0 20 Carbon tetrachloride 25.0 32.6 130 72 - 142 20 ug/L 0 1,2-Dichloroethane 25.0 29.6 ug/L 118 73 - 122 3 20 Trichloroethene 25.0 27.6 ug/L 110 80 - 123 1 20 25.0 87 79 - 119 n 20 1,2-Dichloropropane 21.7 ug/L Dichlorobromomethane 25.0 28.6 ug/L 114 81 - 130 2 20 trans-1,3-Dichloropropene 25.0 27.9 ug/L 112 76 - 122 20 cis-1,3-Dichloropropene 25.0 26.3 ug/L 105 82 - 119 20 20 1,1,2-Trichloroethane 25.0 23.4 ug/L 94 80 - 117 0 Tetrachloroethene 25.0 30.2 ug/L 121 81 - 130 20 Chlorodibromomethane 25.0 30.7 ug/L 123 77 - 133 0 20 Chlorobenzene 25.0 24.4 98 76 - 116 0 20 ug/L 75 - 127 25.0 29.2 117 Bromoform ug/L 20 1,1,2,2-Tetrachloroethane 25.0 75 70 - 115 20 18.8 ug/L 25.0 1,3-Dichlorobenzene 25.0 ug/L 100 76 - 116 20 1,4-Dichlorobenzene 25.0 24.8 ug/L 99 76 - 116 20 1,2-Dichlorobenzene 25.0 25.6 ug/L 102 77 - 117 20 Chloromethane 25.0 23.5 ug/L 94 49 - 134 20 Bromomethane 25.0 27.7 111 70 - 132 5 20 ug/L 25.0 70 - 133 20 30.7 ug/L 123 8 1,1,2-Trichloro-1,2,2-trifluoroetha ne **EDB** 25.0 26.2 105 80 - 121 20 ug/L

LCSD LCSD %Recovery Qualifier Surrogate Limits Toluene-d8 (Surr) 101 70 - 130 4-Bromofluorobenzene 99 67 - 130 1,2-Dichloroethane-d4 (Surr) 72 - 130 119

Lab Sample ID: MB 720-253550/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

29.1

ug/L

116

78 - 120

6

25.0

Analysis Batch: 253550

1,2,4-Trichlorobenzene

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			10/16/18 19:22	1
1,1-Dichloroethane	ND		0.50		ug/L			10/16/18 19:22	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/16/18 19:22	1
Vinyl chloride	ND		0.50		ug/L			10/16/18 19:22	1
Chloroethane	ND		1.0		ug/L			10/16/18 19:22	1
Trichlorofluoromethane	ND		1.0		ug/L			10/16/18 19:22	1
Methylene Chloride	ND		5.0		ug/L			10/16/18 19:22	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/16/18 19:22	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			10/16/18 19:22	1
Chloroform	ND		1.0		ug/L			10/16/18 19:22	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/16/18 19:22	1
Carbon tetrachloride	ND		0.50		ug/L			10/16/18 19:22	1
1,2-Dichloroethane	ND		0.50		ug/L			10/16/18 19:22	1

TestAmerica Pleasanton

10/18/2018

20

TestAmerica Job ID: 720-89095-1

Client: AECOM Project/Site: Former TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-253550/4	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 253550

Analysis Daton. 200000	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.50		ug/L			10/16/18 19:22	1
1,2-Dichloropropane	ND		0.50		ug/L			10/16/18 19:22	1
Dichlorobromomethane	ND		0.50		ug/L			10/16/18 19:22	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/16/18 19:22	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/16/18 19:22	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/16/18 19:22	1
Tetrachloroethene	ND		0.50		ug/L			10/16/18 19:22	1
Chlorodibromomethane	ND		0.50		ug/L			10/16/18 19:22	1
Chlorobenzene	ND		0.50		ug/L			10/16/18 19:22	1
Bromoform	ND		1.0		ug/L			10/16/18 19:22	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/16/18 19:22	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/16/18 19:22	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/16/18 19:22	1
1,2-Dichlorobenzene	ND		0.50		ug/L			10/16/18 19:22	1
Chloromethane	ND		1.0		ug/L			10/16/18 19:22	1
Bromomethane	ND		1.0		ug/L			10/16/18 19:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/16/18 19:22	1
EDB	ND		0.50		ug/L			10/16/18 19:22	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/16/18 19:22	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 102 70 - 130 10/16/18 19:22 4-Bromofluorobenzene 89 67 - 130 10/16/18 19:22 1 1,2-Dichloroethane-d4 (Surr) 101 72 - 130 10/16/18 19:22

Lab Sample ID: LCS 720-253550/5

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Databy 25255							Frep Type. Total/NA
Analysis Batch: 253550	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	25.0	26.2		ug/L		105	69 - 119
1,1-Dichloroethane	25.0	25.7		ug/L		103	77 - 119
Dichlorodifluoromethane	25.0	26.8		ug/L		107	21 - 150
Vinyl chloride	25.0	25.6		ug/L		102	58 - 138
Chloroethane	25.0	27.6		ug/L		110	70 - 131
Trichlorofluoromethane	25.0	26.7		ug/L		107	75 - 141
Methylene Chloride	25.0	26.2		ug/L		105	75 - 117
trans-1,2-Dichloroethene	25.0	26.6		ug/L		106	79 - 117
cis-1,2-Dichloroethene	25.0	25.6		ug/L		102	77 - 117
Chloroform	25.0	24.9		ug/L		100	82 - 119
1,1,1-Trichloroethane	25.0	26.3		ug/L		105	74 - 130
Carbon tetrachloride	25.0	26.1		ug/L		104	72 - 142
1,2-Dichloroethane	25.0	23.2		ug/L		93	73 - 122
Trichloroethene	25.0	26.1		ug/L		104	80 - 123
1,2-Dichloropropane	25.0	25.2		ug/L		101	79 - 119
Dichlorobromomethane	25.0	24.3		ug/L		97	81 - 130
trans-1,3-Dichloropropene	25.0	24.6		ug/L		98	76 - 122
cis-1,3-Dichloropropene	25.0	24.7		ug/L		99	82 - 119

TestAmerica Pleasanton

ED_013213_00000989-00210

10/18/2018

Client: AECOM

Project/Site: Former TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-253550/5

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 253550

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
25.0	22.9		ug/L		92	80 - 117	
25.0	26.2		ug/L		105	81 - 130	
25.0	23.5		ug/L		94	77 - 133	
25.0	24.8		ug/L		99	76 - 116	
25.0	23.8		ug/L		95	75 - 127	
25.0	24.2		ug/L		97	70 - 115	
25.0	25.2		ug/L		101	76 - 116	
25.0	24.6		ug/L		98	76 - 116	
25.0	24.8		ug/L		99	77 - 117	
25.0	25.1		ug/L		100	49 - 134	
25.0	26.2		ug/L		105	70 - 132	
25.0	29.1		ug/L		116	70 - 133	
25.0	24.6		ug/L		98	80 - 121	
25.0	25.8		ug/L		103	78 - 120	
	Added 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 22.9 25.0 26.2 25.0 23.5 25.0 24.8 25.0 24.2 25.0 25.2 25.0 24.6 25.0 25.1 25.0 26.2 25.0 29.1 25.0 24.6	Added Result Qualifier 25.0 22.9 25.0 26.2 25.0 23.5 25.0 24.8 25.0 23.8 25.0 24.2 25.0 25.2 25.0 24.6 25.0 24.8 25.0 25.1 25.0 26.2 25.0 29.1 25.0 24.6	Added Result Qualifier Unit 25.0 22.9 ug/L 25.0 26.2 ug/L 25.0 23.5 ug/L 25.0 24.8 ug/L 25.0 23.8 ug/L 25.0 24.2 ug/L 25.0 25.2 ug/L 25.0 24.6 ug/L 25.0 24.8 ug/L 25.0 25.1 ug/L 25.0 26.2 ug/L 25.0 29.1 ug/L 25.0 24.6 ug/L	Added Result Qualifier Unit D 25.0 22.9 ug/L ug/L 25.0 26.2 ug/L ug/L 25.0 23.5 ug/L ug/L 25.0 24.8 ug/L ug/L 25.0 24.2 ug/L ug/L 25.0 25.2 ug/L ug/L 25.0 24.6 ug/L ug/L 25.0 25.1 ug/L ug/L 25.0 29.1 ug/L ug/L 25.0 24.6 ug/L ug/L	Added Result Qualifier Unit D %Rec 25.0 22.9 ug/L 92 25.0 26.2 ug/L 105 25.0 23.5 ug/L 94 25.0 24.8 ug/L 99 25.0 23.8 ug/L 95 25.0 24.2 ug/L 97 25.0 25.2 ug/L 101 25.0 24.6 ug/L 98 25.0 24.8 ug/L 99 25.0 25.1 ug/L 100 25.0 26.2 ug/L 105 25.0 29.1 ug/L 116	Added Result Qualifier Unit D %Rec Limits 25.0 22.9 ug/L 92 80 - 117 25.0 26.2 ug/L 105 81 - 130 25.0 23.5 ug/L 94 77 - 133 25.0 24.8 ug/L 99 76 - 116 25.0 23.8 ug/L 95 75 - 127 25.0 24.2 ug/L 97 70 - 115 25.0 25.2 ug/L 101 76 - 116 25.0 24.6 ug/L 98 76 - 116 25.0 24.8 ug/L 99 77 - 117 25.0 25.1 ug/L 100 49 - 134 25.0 25.1 ug/L 105 70 - 132 25.0 29.1 ug/L 116 70 - 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		70 - 130
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	98		72 - 130

Lab Sample ID: LCSD 720-253550/6 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 253550

Analysis Batch: 203000									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	25.0	27.3		ug/L		109	69 - 119	4	20
1,1-Dichloroethane	25.0	26.0		ug/L		104	77 - 119	1	20
Dichlorodifluoromethane	25.0	29.9		ug/L		120	21 - 150	11	20
Vinyl chloride	25.0	27.9		ug/L		112	58 - 138	8	20
Chloroethane	25.0	28.8		ug/L		115	70 - 131	4	20
Trichlorofluoromethane	25.0	28.0		ug/L		112	75 - 141	5	20
Methylene Chloride	25.0	27.6		ug/L		110	75 - 117	5	20
trans-1,2-Dichloroethene	25.0	26.6		ug/L		107	79 - 117	0	20
cis-1,2-Dichloroethene	25.0	25.7		ug/L		103	77 - 117	1	20
Chloroform	25.0	24.3		ug/L		97	82 - 119	2	20
1,1,1-Trichloroethane	25.0	26.4		ug/L		106	74 - 130	1	20
Carbon tetrachloride	25.0	27.4		ug/L		110	72 - 142	5	20
1,2-Dichloroethane	25.0	23.3		ug/L		93	73 - 122	1	20
Trichloroethene	25.0	26.4		ug/L		106	80 - 123	1	20
1,2-Dichloropropane	25.0	25.3		ug/L		101	79 - 119	0	20
Dichlorobromomethane	25.0	24.2		ug/L		97	81 - 130	1	20
trans-1,3-Dichloropropene	25.0	26.0		ug/L		104	76 - 122	6	20
cis-1,3-Dichloropropene	25.0	25.1		ug/L		100	82 - 119	2	20
1,1,2-Trichloroethane	25.0	24.8		ug/L		99	80 - 117	8	20
Tetrachloroethene	25.0	27.1		ug/L		108	81 - 130	3	20
Chlorodibromomethane	25.0	24.7		ug/L		99	77 - 133	5	20
Chlorobenzene	25.0	24.3		ug/L		97	76 - 116	2	20

Project/Site: Former TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-253550/6 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 253550

Client: AECOM

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromoform	25.0	24.4	***************************************	ug/L		97	75 - 127	3	20
1,1,2,2-Tetrachloroethane	25.0	24.4		ug/L		98	70 - 115	1	20
1,3-Dichlorobenzene	25.0	25.3		ug/L		101	76 - 116	0	20
1,4-Dichlorobenzene	25.0	24.4		ug/L		98	76 - 116	1	20
1,2-Dichlorobenzene	25.0	24.9		ug/L		100	77 - 117	1	20
Chloromethane	25.0	25.8		ug/L		103	49 - 134	3	20
Bromomethane	25.0	27.4		ug/L		110	70 - 132	4	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	30.7		ug/L		123	70 - 133	5	20
ne									
EDB	25.0	26.1		ug/L		105	80 - 121	6	20
1,2,4-Trichlorobenzene	25.0	28.0		ug/L		112	78 - 120	8	20

LCSD LCSD

Surrogate	%Recovery C	<i>Qualifier</i>	Limits
Toluene-d8 (Surr)	103		70 - 130
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		72 - 130

Lab Sample ID: MB 720-253558/4 Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water

Analysis Ratch: 253558

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			10/16/18 20:39	1
1,1-Dichloroethane	ND		0.50		ug/L			10/16/18 20:39	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/16/18 20:39	1
Vinyl chloride	ND		0.50		ug/L			10/16/18 20:39	1
Chloroethane	ND		1.0		ug/L			10/16/18 20:39	1
Trichlorofluoromethane	ND		1.0		ug/L			10/16/18 20:39	1
Methylene Chloride	ND		5.0		ug/L			10/16/18 20:39	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/16/18 20:39	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			10/16/18 20:39	1
Chloroform	ND		1.0		ug/L			10/16/18 20:39	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/16/18 20:39	1
Carbon tetrachloride	ND		0.50		ug/L			10/16/18 20:39	1
1,2-Dichloroethane	ND		0.50		ug/L			10/16/18 20:39	1
Trichloroethene	ND		0.50		ug/L			10/16/18 20:39	1
1,2-Dichloropropane	ND		0.50		ug/L			10/16/18 20:39	1
Dichlorobromomethane	ND		0.50		ug/L			10/16/18 20:39	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/16/18 20:39	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/16/18 20:39	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/16/18 20:39	1
Tetrachloroethene	ND		0.50		ug/L			10/16/18 20:39	1
Chlorodibromomethane	ND		0.50		ug/L			10/16/18 20:39	1
Chlorobenzene	ND		0.50		ug/L			10/16/18 20:39	1
Bromoform	ND		1.0		ug/L			10/16/18 20:39	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/16/18 20:39	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/16/18 20:39	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/16/18 20:39	1

Page 21 of 32

TestAmerica Pleasanton

10/18/2018

TestAmerica Job ID: 720-89095-1

Client: AECOM

Project/Site: Former TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ND

Client Sample ID: Method Blank

Prep Type: Total/NA

10/16/18 20:39

TestAmerica Job ID: 720-89095-1

Analysis Batch: 253558 MB MB MDL Unit Dil Fac Analyte Result Qualifier RL D Prepared Analyzed 1,2-Dichlorobenzene 0.50 10/16/18 20:39 ND ug/L Chloromethane ND 1.0 ug/L 10/16/18 20:39 Bromomethane ND 1.0 ug/L 10/16/18 20:39 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/16/18 20:39 EDB ND 0.50 ug/L 10/16/18 20:39

MB MB %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 94 70 - 130 10/16/18 20:39 87 67 - 130 4-Bromofluorobenzene 10/16/18 20:39 105 72 - 130 1,2-Dichloroethane-d4 (Surr) 10/16/18 20:39 1

1.0

ug/L

Lab Sample ID: LCS 720-253558/5

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 253558

Lab Sample ID: MB 720-253558/4

Matrix: Water

1,2,4-Trichlorobenzene

	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
1,1-Dichloroethene	25.0	22.4	ug/L	89	69 - 119
1,1-Dichloroethane	25.0	26.1	ug/L	104	77 - 119
Dichlorodifluoromethane	25.0	20.5	ug/L	82	21 - 150
Vinyl chloride	25.0	18.7	ug/L	75	58 ₋ 138
Chloroethane	25.0	19.4	ug/L	78	70 - 131
Trichlorofluoromethane	25.0	25.0	ug/L	100	75 - 141
Methylene Chloride	25.0	24.8	ug/L	99	75 - 117
trans-1,2-Dichloroethene	25.0	23.7	ug/L	95	79 - 117
cis-1,2-Dichloroethene	25.0	26.6	ug/L	106	77 - 117
Chloroform	25.0	25.9	ug/L	104	82 - 119
1,1,1-Trichloroethane	25.0	25.1	ug/L	100	74 ₋ 130
Carbon tetrachloride	25.0	24.5	ug/L	98	72 - 142
1,2-Dichloroethane	25.0	25.3	ug/L	101	73 - 122
Trichloroethene	25.0	23.1	ug/L	93	80 - 123
1,2-Dichloropropane	25.0	26.3	ug/L	105	79 - 119
Dichlorobromomethane	25.0	24.7	ug/L	99	81 - 130
trans-1,3-Dichloropropene	25.0	23.8	ug/L	95	76 - 122
cis-1,3-Dichloropropene	25.0	25.3	ug/L	101	82 - 119
1,1,2-Trichloroethane	25.0	24.8	ug/L	99	80 - 117
Tetrachloroethene	25.0	22.3	ug/L	89	81 - 130
Chlorodibromomethane	25.0	24.1	ug/L	96	77 - 133
Chlorobenzene	25.0	26.3	ug/L	105	76 - 116
Bromoform	25.0	24.6	ug/L	98	75 - 127
1,1,2,2-Tetrachloroethane	25.0	23.5	ug/L	94	70 ₋ 115
1,3-Dichlorobenzene	25.0	25.7	ug/L	103	76 - 116
1,4-Dichlorobenzene	25.0	24.3	ug/L	97	76 - 116
1,2-Dichlorobenzene	25.0	24.1	ug/L	97	77 - 117
Chloromethane	25.0	21.3	ug/L	85	49 - 134
Bromomethane	25.0	18.6	ug/L	74	70 - 132
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.8	ug/L	91	70 - 133
ne			-		

QC Sample Results

Client: AECOM

Project/Site: Former TRW Microwave

Lab Sample ID: LCSD 720-253558/6

TestAmerica Job ID: 720-89095-1

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-253558/5 Client Sample ID: Lab Control Sample

Matrix: Water Analysis Batch: 253558

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec EDB 25.0 80 - 121 23.0 ug/L 92 1,2,4-Trichlorobenzene 25.0 26.8 ug/L 107 78 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	92		70 - 130
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	105		72 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 253558							i icp i y	pc. 10t	CHILAL
,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	25.0	23.5		ug/L		94	69 - 119	5	20
1,1-Dichloroethane	25.0	26.5		ug/L		106	77 - 119	2	20
Dichlorodifluoromethane	25.0	24.6		ug/L		98	21 - 150	18	20
Vinyl chloride	25.0	24.6	*	ug/L		98	58 - 138	27	20
Chloroethane	25.0	23.5		ug/L		94	70 - 131	19	20
Trichlorofluoromethane	25.0	30.9	*	ug/L		124	75 - 141	21	20
Methylene Chloride	25.0	24.5		ug/L		98	75 - 117	1	20
trans-1,2-Dichloroethene	25.0	24.4		ug/L		98	79 - 117	3	20
cis-1,2-Dichloroethene	25.0	26.8		ug/L		107	77 - 117	1	20
Chloroform	25.0	25.9		ug/L		103	82 - 119	0	20
1,1,1-Trichloroethane	25.0	25.6		ug/L		102	74 - 130	2	20
Carbon tetrachloride	25.0	24.8		ug/L		99	72 - 142	1	20
1,2-Dichloroethane	25.0	24.6		ug/L		98	73 - 122	3	20
Trichloroethene	25.0	24.6		ug/L		98	80 - 123	6	20
1,2-Dichloropropane	25.0	27.7		ug/L		111	79 ₋ 119	5	20
Dichlorobromomethane	25.0	25.3		ug/L		101	81 - 130	2	20
trans-1,3-Dichloropropene	25.0	24.6		ug/L		98	76 - 122	3	20
cis-1,3-Dichloropropene	25.0	27.1		ug/L		108	82 - 119	7	20
1,1,2-Trichloroethane	25.0	24.9		ug/L		100	80 - 117	0	20
Tetrachloroethene	25.0	25.1		ug/L		100	81 - 130	12	20
Chlorodibromomethane	25.0	24.0		ug/L		96	77 - 133	0	20
Chlorobenzene	25.0	26.0		ug/L		104	76 - 116	1	20
Bromoform	25.0	22.2		ug/L		89	75 - 127	10	20
1,1,2,2-Tetrachloroethane	25.0	21.2		ug/L		85	70 - 115	10	20
1,3-Dichlorobenzene	25.0	26.0		ug/L		104	76 - 116	1	20
1,4-Dichlorobenzene	25.0	26.1		ug/L		104	76 - 116	7	20
1,2-Dichlorobenzene	25.0	24.3		ug/L		97	77 - 117	1	20
Chloromethane	25.0	27.4	*	ug/L		110	49 - 134	25	20
Bromomethane	25.0	22.2		ug/L		89	70 _ 132	18	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.9		ug/L		92	70 - 133	1	20
ne EDB	25.0	23.2		ug/L		93	80 - 121	1	20
1,2,4-Trichlorobenzene	25.0	30.3	*	ug/L		121	78 - 120	13	20

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: AECOM

Project/Site: Former TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-253558/6

Matrix: Water

Analysis Batch: 253558

LCSD LCSD

	2000		
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		70 - 130
4-Bromofluorobenzene	111		67 - 130
1.2-Dichloroethane-d4 (Surr)	99		72 - 130

Lab Sample ID: MB 720-253630/4

Matrix: Water

Analysis Batch: 253630

MB MB

MR MR

AnalyteResult cis-1,2-DichloroetheneResult NDQualifierRL NDMDL ug/LUnit ug/LD Prepared ug/LAnalyzed 10/17/18 18:57Dil Fac 10/17/18 18:57

	IND IND				
Surrogate	%Recovery Qualifier	Limits	Prepared An	alyzed	Dil Fac
Toluene-d8 (Surr)	93	70 - 130	10/17	/18 18:57	1
4-Bromofluorobenzene	83	67 - 130	10/17.	/18 18:57	1
1,2-Dichloroethane-d4 (Surr)	107	72 - 130	10/17.	/18 18:57	1

Lab Sample ID: LCS 720-253630/5

Matrix: Water

Analysis Batch: 253630

 Spike
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 cis-1,2-Dichloroethene
 25.0
 27.4
 ug/L
 110
 77 - 117

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	113		70 - 130
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	101		72 - 130

Lab Sample ID: LCSD 720-253630/6

Matrix: Water

Analysis Batch: 253630

LCSD LCSD %Rec. RPD Spike Result Qualifier Unit Analyte Added Limits RPD Limit %Rec 25.0 cis-1,2-Dichloroethene 27.0 ug/L 108 77 - 117

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101	***************************************	70 - 130
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130

QC Association Summary

Client: AECOM

Project/Site: Former TRW Microwave

TestAmerica Job ID: 720-89095-1

GC/MS VOA

Analysis Batch: 253548

La	ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
72	20-89095-1	TRIPBLANK-J6038-101118	Total/NA	Water	8260B	
M	B 720-253548/4	Method Blank	Total/NA	Water	8260B	
LC	CS 720-253548/5	Lab Control Sample	Total/NA	Water	8260B	
LĊ	CSD 720-253548/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 253550

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-89095-2	J6038-T22B-101118	Total/NA	Water	8260B	
720-89095-3	J6038-T24B-101118	Total/NA	Water	8260B	
720-89095-5	J6038-T17B-101118	Total/NA	Water	8260B	
720-89095-6	J6038-T5B-101118-1	Total/NA	Water	8260B	
720-89095-7	J6038-T5B-101118-2	Total/NA	Water	8260B	
720-89095-8	J6038-T10C-101118	Total/NA	Water	8260B	
MB 720-253550/4	Method Blank	Total/NA	Water	8260B	
LCS 720-253550/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-253550/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 253558

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-89095-4	J6038-T9B-101118	Total/NA	Water	8260B	
MB 720-253558/4	Method Blank	Total/NA	Water	8260B	
LCS 720-253558/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-253558/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 253630

Lab Sample ID 720-89095-4	Client Sample ID J6038-T9B-101118	Prep Type Total/NA	Matrix Water	Method 8260B	Prep Batch
MB 720-253630/4	Method Blank	Total/NA	Water	8260B	
LCS 720-253630/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-253630/6	Lab Control Sample Dup	Total/NA	Water	8260B	

TestAmerica Pleasanton

ED_013213_00000989-00216

TestAmerica Job ID: 720-89095-1

Lab Sample ID: 720-89095-1

Matrix: Water

Client Sample ID: TRIPBLANK-J6038-101118 Date Collected: 10/11/18 07:30

Date Received: 10/11/18 18:30

Dilution Batch Batch Batch Prepared Prep Type Method Factor Number or Analyzed Type Run Analyst Lab TAL PLS Total/NA Analysis 8260B 253548 10/16/18 21:47 JRM

Client Sample ID: J6038-T22B-101118

Batch

Batch

Date Collected: 10/11/18 08:15 Date Received: 10/11/18 18:30

Lab Sample ID: 720-89095-2 Matrix: Water

Prepared **Prep Type** Method Number or Analyzed Type Run Factor Analyst Lab Total/NA Analysis 8260B 253550 10/16/18 21:45 JRM TAL PLS

Dilution

Client Sample ID: J6038-T24B-101118 Lab Sample ID: 720-89095-3 Matrix: Water

Batch

Date Collected: 10/11/18 09:25 Date Received: 10/11/18 18:30

Batch Batch Dilution Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Analyst Lab

Total/NA Analysis 8260B 253550 10/16/18 22:14 JRM TAL PLS

Client Sample ID: J6038-T9B-101118

Date Collected: 10/11/18 11:00 Date Received: 10/11/18 18:30

Lab Sample ID: 720-89095-4

Matrix: Water

Matrix: Water

Batch Batch Dilution Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 253558 10/17/18 02:53 **JRM** TAL PLS 253630 10/17/18 21:21 JRM Total/NA Analysis 8260B 10 TAL PLS

Client Sample ID: J6038-T17B-101118 Lab Sample ID: 720-89095-5

Date Collected: 10/11/18 12:00

Date Received: 10/11/18 18:30

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab TAL PLS Total/NA 8260B 10 253550 10/16/18 22:43 JRM Analysis

Client Sample ID: J6038-T5B-101118-1 Lab Sample ID: 720-89095-6

Date Collected: 10/11/18 13:10 Matrix: Water Date Received: 10/11/18 18:30

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Lab **Prep Type** Type Analyst TAL PLS 8260B 50 253550 Total/NA Analysis 10/16/18 23:12 JRM

Lab Chronicle

Client: AECOM

Project/Site: Former TRW Microwave

TestAmerica Job ID: 720-89095-1

Lab Sample ID: 720-89095-7

Matrix: Water

Client Sample ID: J6038-T5B-101118-2 Date Collected: 10/11/18 13:15

Date Received: 10/11/18 18:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		100	253550	10/16/18 23:41	JRM	TAL PLS

Client Sample ID: J6038-T10C-101118 Lab Sample ID: 720-89095-8

Page 27 of 32

Date Received: 10/11/18 18:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		50	253550	10/17/18 00:10	JRM	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Pleasanton

200000000000

Accreditation/Certification Summary

TestAmerica Job ID: 720-89095-1 Client: AECOM

Project/Site: Former TRW Microwave

Laboratory: TestAmerica Pleasanton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State Program	9	2496	01-31-20
USDA	Federal		P330-17-00380	12-11-20

Method Summary

Client: AECOM

Project/Site: Former TRW Microwave

TestAmerica Job ID: 720-89095-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS
5030B	Purge and Trap	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Pleasanton

Page 29 of 32

12

Sample Summary

Client: AECOM

Project/Site: Former TRW Microwave

TestAmerica Job ID: 720-89095-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
720-89095-1	TRIPBLANK-J6038-101118	Water	70/11/18 07:30 T0/11/18 18:30
720-89095-2	J6038-T22B-101118	Water	10/11/18 08:15 10/11/18 18:30
720-89095-3	J6038-T24B-101118	Water	10/11/18 09:25 10/11/18 18:30
720-89095-4	J6038-T9B-101118	Water	10/11/18 11:00 10/11/18 18:30
720-89095-5	J6038-T17B-101118	Water	10/11/18 12:00 10/11/18 18:30
720-89095-6	J6038-T5B-101118-1	Water	10/11/18 13:10 10/11/18 18:30
720-89095-7	J6038-T5B-101118-2	Water	10/11/18 13:15 10/11/18 18:30
720-89095-8	J6038-T10C-101118	Water	10/11/18 15:05 10/11/18 18:30

.....

Client: AECOM Job Number: 720-89095-1

Login Number: 89095 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Bullock, Tracy

· · · · · · · · · · · · · · · · · · ·		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-90321-1 Client Project/Site: TRW Microwave

For:

AECOM Technical Services Inc. 999 Town & Country Road Ist Floor Orange, California 92868

Attn: Ms. Holly Holbrook

Marfelt 🗦

Authorized for release by: 12/21/2018 11:04:23 AM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

Review your project

LINKS

results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	35
Lab Chronicle	36
Certification Summary	37
Method Summary	38
Sample Summary	39
	40
Receipt Checklists	41

Definitions/Glossary

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description

LCS or LCSD is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Job ID: 720-90321-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-90321-1

Comments

No additional comments.

Receipt

The samples were received on 12/14/2018 4:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.3° C.

GC/MS VOA

Method(s) 8260B: The laboratory control sample duplicate (LCSD) for analytical batch 720-257144 recovered outside control limits for the following analytes: 1,2,4-Trimethylbenzene. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

.....

Detection Summary

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-1

No Detections.

Client Sample ID: J6038-T-25BD-121418

Client Sample ID: J6038-TRIPBLANK-121418

Lab Sample ID: 720-90321-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	77	5.0	ug/L	10	8260B	Total/NA
Tetrachloroethene	8.2	5.0	ug/L	10	8260B	Total/NA
Trichloroethene	450	5.0	ug/ L	10	8260B	Total/NA
1,1,2-Trichloro-1,2,2-trifluoroethane	5.1	5.0	ug/ L	10	8260B	Total/NA

Client Sample ID: J6038-T-25BS-121418

Lab Sample ID: 720-90321-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	270	5.0	ug/L	10	8260B	Total/NA
trans-1,2-Dichloroethene	6.6	5.0	ug/L	10	8260B	Total/NA
Trichloroethene	350	5.0	ug/L	10	8260B	Total/NA

Client Sample ID: J6038-EB-121418

Lab Sample ID: 720-90321-4

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

12/21/2018

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-1

Matrix: Water

Client Sample ID: J6038-TRIPBLANK-121418 Date Collected: 12/14/18 09:00

Date Received: 12/14/18 16:30

Method: 8260B - Volatile Organi ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50		ug/L		<u> </u>	12/17/18 17:20	
Acetone	ND		50		ug/L			12/17/18 17:20	
Benzene	ND		0.50		ug/L			12/17/18 17:20	
Dichlorobromomethane	ND		0.50		ug/L			12/17/18 17:20	
Bromobenzene	ND		1.0		ug/L			12/17/18 17:20	
Chlorobromomethane	ND		1.0		ug/L			12/17/18 17:20	
Bromoform	ND		1.0		ug/L			12/17/18 17:20	
Bromomethane	ND		1.0		ug/L			12/17/18 17:20	
2-Butanone (MEK)	ND		50		ug/L			12/17/18 17:20	
n-Butylbenzene	ND		1.0		ug/L			12/17/18 17:20	
ec-Butylbenzene	ND		1.0		ug/L			12/17/18 17:20	
ert-Butylbenzene	ND		1.0		ug/L			12/17/18 17:20	
Carbon disulfide	ND		5.0		ug/L			12/17/18 17:20	
Carbon tetrachloride	ND		0.50		ug/L			12/17/18 17:20	
Chlorobenzene	ND		0.50		ug/L			12/17/18 17:20	
Chloroethane	ND		1.0		ug/L			12/17/18 17:20	
Chloroform	ND		1.0		ug/L			12/17/18 17:20	
chloromethane	ND		1.0		ug/L			12/17/18 17:20	
-Chlorotoluene	ND		0.50		ug/L			12/17/18 17:20	
-Chlorotoluene	ND		0.50		ug/L			12/17/18 17:20	
Chlorodibromomethane	ND		0.50		ug/L			12/17/18 17:20	
,2-Dichlorobenzene	ND		0.50		ug/L			12/17/18 17:20	
,3-Dichlorobenzene	ND		0.50		ug/L			12/17/18 17:20	
,4-Dichlorobenzene	ND		0.50		ug/L			12/17/18 17:20	
,3-Dichloropropane	ND		1.0		ug/L			12/17/18 17:20	
,1-Dichloropropene	ND		0.50		ug/L			12/17/18 17:20	
,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			12/17/18 17:20	
thylene Dibromide	ND		0.50		ug/L			12/17/18 17:20	
Dibromomethane	ND		0.50		ug/L			12/17/18 17:20	
tichlorodifluoromethane	ND		0.50		ug/L			12/17/18 17:20	
.1-Dichloroethane	ND		0.50		ug/L			12/17/18 17:20	
,2-Dichloroethane	ND		0.50		ug/L			12/17/18 17:20	
,1-Dichloroethene	ND		0.50		ug/L			12/17/18 17:20	
is-1,2-Dichloroethene	ND		0.50		ug/L			12/17/18 17:20	
ans-1,2-Dichloroethene	ND		0.50		ug/L			12/17/18 17:20	
,2-Dichloropropane	ND		0.50		ug/L			12/17/18 17:20	
s-1,3-Dichloropropene	ND		0.50		ug/L ug/L			12/17/18 17:20	
	ND		0.50		ug/L ug/L			12/17/18 17:20	
ans-1,3-Dichloropropene	ND		0.50		_				
thylbenzene					ug/L			12/17/18 17:20	
exachlorobutadiene	ND		1.0		ug/L			12/17/18 17:20	
-Hexanone	ND		50		ug/L			12/17/18 17:20	
sopropylbenzene	ND		0.50		ug/L			12/17/18 17:20	
-Isopropyltoluene	ND		1.0		ug/L			12/17/18 17:20	
Methylene Chloride	ND		5.0		ug/L			12/17/18 17:20	
-Methyl-2-pentanone (MIBK)	ND		50		ug/L			12/17/18 17:20	
laphthalene	ND		1.0		ug/L			12/17/18 17:20	
I-Propylbenzene 	ND		1.0		ug/L			12/17/18 17:20	
Styrene ,1,1,2-Tetrachloroethane	ND ND		0.50		ug/L ug/L			12/17/18 17:20 12/17/18 17:20	

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-1

Matrix: Water

Client Sample	:ID:	J6038-TRIPBLANK-121418	
---------------	------	------------------------	--

Date Collected: 12/14/18 09:00

Date Received: 12/14/18 16:30

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			12/17/18 17:20	1
Tetrachloroethene	ND		0.50	ug/L			12/17/18 17:20	1
Toluene	ND		0.50	ug/ L			12/17/18 17:20	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			12/17/18 17:20	1
1,2,4-Trichlorobenzene	ND		1.0	ug/ L			12/17/18 17:20	1
1,1,1-Trichloroethane	ND		0.50	ug/L			12/17/18 17:20	1
1,1,2-Trichloroethane	ND		0.50	ug/L			12/17/18 17:20	1
Trichloroethene	ND		0.50	ug/L			12/17/18 17:20	1
Trichlorofluoromethane	ND		1.0	ug/L			12/17/18 17:20	1
1,2,3-Trichloropropane	ND		1.0	ug/ L			12/17/18 17:20	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			12/17/18 17:20	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			12/17/18 17:20	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			12/17/18 17:20	1
Vinyl acetate	ND		10	ug/L			12/17/18 17:20	1
Vinyl chloride	ND		0.50	ug/ L			12/17/18 17:20	1
Xylenes, Total	ND		0.50	ug/L			12/17/18 17:20	1
2,2-Dichloropropane	ND		0.50	ug/L			12/17/18 17:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	90		67 _ 130				12/17/18 17:20	1
1,2-Dichloroethane-d4 (Surr)	109		72 _ 130				12/17/18 17:20	1
Toluene-d8 (Surr)	101		70 ₋ 130				12/17/18 17:20	1

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-2

Matrix: Water

Client Sample ID: J6038-T-25BD-121418

Date Collected: 12/14/18 09:27 Date Received: 12/14/18 16:30

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
lethyl tert-butyl ether	ND		5.0		ug/L			12/18/18 13:42	
cetone	ND		500		ug/L			12/18/18 13:42	
enzene	ND		5.0		ug/L			12/18/18 13:42	,
tichlorobromomethane	ND		5.0		ug/L			12/18/18 13:42	
romobenzene	ND		10		ug/L			12/18/18 13:42	
hlorobromomethane	ND		10		ug/L			12/18/18 13:42	
romoform	ND		10		ug/L			12/18/18 13:42	
romomethane	ND		10		ug/L			12/18/18 13:42	
-Butanone (MEK)	ND		500		ug/L			12/18/18 13:42	
Butylbenzene	ND		10		ug/L			12/18/18 13:42	
ec-Butylbenzene	ND		10		ug/L			12/18/18 13:42	
rt-Butylbenzene	ND		10		ug/L			12/18/18 13:42	
arbon disulfide	ND		50		ug/L			12/18/18 13:42	
arbon tetrachloride	ND		5.0		ug/L			12/18/18 13:42	
nlorobenzene	ND		5.0		ug/L			12/18/18 13:42	
lloroethane	ND ND		10		ug/L ug/L			12/18/18 13:42	
nloroform	ND		10		ug/L			12/18/18 13:42	
nloromethane	ND		10		ug/L			12/18/18 13:42	
Chlorotoluene	ND		5.0					12/18/18 13:42	
Chlorotoluene	ND ND		5.0		ug/L			12/18/18 13:42	
lorodibromomethane	ND ND		5.0		ug/L			12/18/18 13:42	
					ug/L				
2-Dichlorobenzene	ND		5.0		ug/L			12/18/18 13:42	
B-Dichlorobenzene	ND		5.0		ug/L			12/18/18 13:42	
I-Dichlorobenzene	ND		5.0		ug/L			12/18/18 13:42	
B-Dichloropropane	ND		10		ug/L			12/18/18 13:42	
l-Dichloropropene	ND		5.0		ug/L			12/18/18 13:42	
2-Dibromo-3-Chloropropane	ND		10		ug/L			12/18/18 13:42	
nylene Dibromide	ND		5.0		ug/L			12/18/18 13:42	
promomethane	ND		5.0		ug/L			12/18/18 13:42	
chlorodifluoromethane	ND		5.0		ug/L			12/18/18 13:42	
I-Dichloroethane	ND		5.0		ug/L			12/18/18 13:42	
2-Dichloroethane	ND		5.0		ug/L			12/18/18 13:42	
l-Dichloroethene	ND		5.0		ug/ L			12/18/18 13:42	
s-1,2-Dichloroethene	77		5.0		ug/L			12/18/18 13:42	
ns-1,2-Dichloroethene	ND		5.0		ug/L			12/18/18 13:42	
2-Dichloropropane	ND		5.0		ug/L			12/18/18 13:42	
-1,3-Dichloropropene	ND		5.0		ug/L			12/18/18 13:42	
ns-1,3-Dichloropropene	ND		5.0		ug/L			12/18/18 13:42	
nylbenzene	ND		5.0		ug/L			12/18/18 13:42	
xachlorobutadiene	ND		10		ug/L			12/18/18 13:42	
Hexanone	ND		500		ug/L			12/18/18 13:42	
propylbenzene	ND		5.0		ug/L			12/18/18 13:42	
sopropyltoluene	ND		10		ug/L			12/18/18 13:42	
ethylene Chloride	ND		50		ug/L			12/18/18 13:42	
Methyl-2-pentanone (MIBK)	ND		500		ug/L			12/18/18 13:42	
aphthalene	ND		10		ug/L			12/18/18 13:42	
Propylbenzene	ND		10		ug/L			12/18/18 13:42	
yrene	ND		5.0		ug/L			12/18/18 13:42	

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-2

Matrix: Water

Client Sample ID: J6038-T-25BD-121418

Date Collected: 12/14/18 09:27

Date Received: 12/14/18 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			12/18/18 13:42	10
Tetrachloroethene	8.2		5.0		ug/L			12/18/18 13:42	10
Toluene	ND		5.0		ug/L			12/18/18 13:42	10
1,2,3-Trichlorobenzene	ND		10		ug/L			12/18/18 13:42	10
1,2,4-Trichlorobenzene	ND		10		ug/L			12/18/18 13:42	10
1,1,1-Trichloroethane	ND		5.0		ug/L			12/18/18 13:42	10
1,1,2-Trichloroethane	ND		5.0		ug/L			12/18/18 13:42	10
Trichloroethene	450		5.0		ug/L			12/18/18 13:42	10
Trichlorofluoromethane	ND		10		ug/L			12/18/18 13:42	10
1,2,3-Trichloropropane	ND		10		ug/L			12/18/18 13:42	10
1,1,2-Trichloro-1,2,2-trifluoroetha	5.1		5.0		ug/L			12/18/18 13:42	10
ne									
1,2,4-Trimethylbenzene	ND	*	5.0		ug/L			12/18/18 13:42	10
1,3,5-Trimethylbenzene	ND		5.0		ug/L			12/18/18 13:42	10
Vinyl acetate	ND		100		ug/L			12/18/18 13:42	10
Vinyl chloride	ND		5.0		ug/L			12/18/18 13:42	10
Xylenes, Total	ND		5.0		ug/L			12/18/18 13:42	10
2,2-Dichloropropane	ND		5.0		ug/L			12/18/18 13:42	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	86		67 - 130			-		12/18/18 13:42	10
1,2-Dichloroethane-d4 (Surr)	104		72 - 130					12/18/18 13:42	10
Toluene-d8 (Surr)	101		70 - 130					12/18/18 13:42	10

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-3

Matrix: Water

Client Sample ID: J6038-T-25BS-121418

Date Collected: 12/14/18 10:35 Date Received: 12/14/18 16:30

Methyl terbuly ether ND 5.0 ug/L 12/18/18/13/18 Acctorice ND 500 ug/L 12/18/18/13/18 Benzeire ND 5.0 ug/L 12/18/18/13/18 Dichloroboromenthame ND 1.0 ug/L 12/18/18/13/18 Chloroboromenthame ND 1.0 ug/L 12/18/18/13/18 Bromomenthame ND 1.0 ug/L 12/18/18/13/18 Coloroborace ND 1.0 ug/L 12/18/18/13/18 Coloroborace ND 1.0 ug/L 12/18/18/13/18 <t< th=""><th>ethod: 8260B - Volatile Organi ^{nalyte}</th><th>Result Qualifier</th><th>RL</th><th>MDL Unit</th><th>D Prepared</th><th>Analyzed</th><th>Dil F</th></t<>	ethod: 8260B - Volatile Organi ^{nalyte}	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil F
Acetone ND 500 ugl. 1218181813 Belanzene ND 50 ugl. 1218181813 Dickhorabromomethane ND 50 ugl. 1218181813 Dickhorabromomethane ND 50 ugl. 1218181813 Bromoleopazene ND 10 10 ugl. 1218181813 Bromoleopazene ND 50 ugl. 1218181813 Bromoleopazene ND 10 ugl. 1218181813 Bromoleopazene ND 50 ugl. 121818181 Bromoleopazene ND 50 ugl. 1218181813 Bromoleopaze	<u> </u>				<u>.</u>	12/18/18 13:14	
Parezer ND	•	ND	500			12/18/18 13:14	
Dichlorobromomethane ND	enzene	ND	5.0	-		12/18/18 13:14	
Noncombersizers	chlorobromomethane	ND	5.0	.		12/18/18 13:14	
Promoter ND	omobenzene	ND	10			12/18/18 13:14	
Armonform ND	nlorobromomethane	ND	10	=		12/18/18 13:14	
Nonemethane ND 10 ug/L 12/18/18/13/18	omoform	ND	10	.		12/18/18 13:14	
Butanone (MEK)	omomethane					12/18/18 13:14	
Bulybenzene ND 10 ug/L 12/18/18 13-1				_		12/18/18 13:14	
ee-Bulylbenzene ND 10 10 ug/L 12/18/18 13:1 ntf-Bulybenzene ND 10 10 ug/L 12/18/18 13:1 ntf-Bulybenzene ND 50 ug/L 12/18/18 13:1 zarbon disultide ND 50 ug/L 12/18/18 13:1 zarbon disultide ND 50 ug/L 12/18/18 13:1 zarbon destrachloride ND 50 ug/L 12/18/18 13:1 zarbon destrachloride ND 50 ug/L 12/18/18 13:1 zarbon destrachloride ND 10 ug/L 12/18/18 13:1 zarbon destrachloride ND 50 ug/L 12/18/18 13:1 zarbon destrachloride ND 10 ug/L 12/18/18 13:1 zarbon destrachloride ND 10 ug/L 12/18/18 13:1 zarbon destrachloride ND 10 ug/L 12/18/18 13:1	Butylbenzene	ND	10			12/18/18 13:14	
art-Butylbenzene ND 10 ug/L 12/18/18 13:1	•					12/18/18 13:14	
Carbon disulfide ND 50 ug/L 12/18/18/13/1 Carbon tetrachloride ND 50 ug/L 12/18/18/13/1 Chilorobenzene ND 50 ug/L 12/18/18/13/1 Chilorocethane ND 10 ug/L 12/18/18/13/1 Chiloroform ND 10 ug/L 12/18/18/13/1 Chilorotoluene ND 50 ug/L 12/18/18/13/1 Li	•			=		12/18/18 13:14	
Carbon tetrachloride ND 5.0 ug/L 12/18/18 13.1 Chlorobenzene ND 5.0 ug/L 12/18/18 13.1 Chloroderbane ND 10 ug/L 12/18/18 13.1 Chlorodolune ND 10 ug/L 12/18/18 13.1 Chlorodolune ND 5.0 ug/L 12/18/18 13.1 Libromoream ND 5.0 ug/L 12/18/18 13.1 Libromoream ND 5.0 ug/L 12/18/18 13.1 Libromoream <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Schorobenzene ND						12/18/18 13:14	
Anioroethane Anior						12/18/18 13:14	
Schloroform ND							
Chloromethane							
Chiorotoluene							
Chlorotoluene							
Ablorodibromomethane ND 5.0 ug/L 12/18/18 13:1 2-Dichlorobenzene ND 5.0 ug/L 12/18/18 13:1 3-Dichlorobenzene ND 5.0 ug/L 12/18/18 13:1 4-Dichlorobenzene ND 5.0 ug/L 12/18/18 13:1 4-Dichlorobenzene ND 5.0 ug/L 12/18/18 13:1 3-Dichloropropane ND 10 ug/L 12/18/18 13:1 3-Dichloropropane ND 5.0 ug/L 12/18/18 13:1 2-Dibromo-3-Chloropropane ND 5.0 ug/L 12/18/18 13:1 2-Dibromo-3-Chloropropane ND 5.0 ug/L 12/18/18 13:1 1-Dichloromethane ND 5.0 ug/L 12/18/18 13:1 1-Dichloropropane ND 5.0 ug/L 12/18/18 13:1 1-Di							
2-Dichlorobenzene							
3-Dichlorobenzene ND 5.0 ug/L 12/18/18 13:1							
A-Dichlorobenzene				_			
3-Dichloropropane ND				-			
1-Dichloropropene ND 5.0 ug/L 12/18/18 13:1				.			
12/18/18 13:1				=			
thylene Dibromide ND 5.0 ug/L 12/18/18 13:1	, ,						
12/18/18 13:1 12/18/18 13:							
12/18/18 13:1-	•			-			
1-Dichloroethane				-			
12/18/18 13:1 12/18/18 13:				_			
,1-Dichloroethene ND 5.0 ug/L 12/18/18 13:1 is-1,2-Dichloroethene 270 5.0 ug/L 12/18/18 13:1 rans-1,2-Dichloroethene 6.6 5.0 ug/L 12/18/18 13:1 ,2-Dichloropropane ND 5.0 ug/L 12/18/18 13:1 is-1,3-Dichloropropene ND 5.0 ug/L 12/18/18 13:1 thylbenzene ND 5.0 ug/L 12/18/18 13:1 lexachlorobutadiene ND 5.0 ug/L 12/18/18 13:1 -Hexanone ND 500 ug/L 12/18/18 13:1 sopropylbenzene ND 5.0 ug/L 12/18/18 13:1 -Isopropyltoluene ND 5.0 ug/L 12/18/18 13:1 -Isopropyltoluene ND 5.0 ug/L 12/18/18 13:1 -Iethylene Chloride ND 50 ug/L 12/18/18 13:1 -Methyl-2-pentanone (MIBK) ND 50 ug/L 12/18/18 13:1 taphthalene ND 10 ug/L 12/18/18 13:1							
is-1,2-Dichloroethene 270 5.0 ug/L 12/18/18 13:1 ans-1,2-Dichloroethene 6.6 5.0 ug/L 12/18/18 13:1 ,2-Dichloropropane ND 5.0 ug/L 12/18/18 13:1 is-1,3-Dichloropropene ND 5.0 ug/L 12/18/18 13:1 ans-1,3-Dichloropropene ND 5.0 ug/L 12/18/18 13:1 exachlorobutadiene ND 5.0 ug/L 12/18/18 13:1 exachlorobutadiene ND 10 ug/L 12/18/18 13:1 expropylbenzene ND 500 ug/L 12/18/18 13:1 expropyltoluene ND 5.0 ug/L 12/18/18 13:1 elethylene Chloride ND 50 ug/L 12/18/18 13:1 -Methyl-2-pentanone (MIBK) ND 50 ug/L 12/18/18 13:1 aphthalene ND 10 ug/L 12/18/18 13:1							
rans-1,2-Dichloroethene 6.6 5.0 ug/L 12/18/18 13:1 ,2-Dichloropropane ND 5.0 ug/L 12/18/18 13:1 is-1,3-Dichloropropene ND 5.0 ug/L 12/18/18 13:1 ans-1,3-Dichloropropene ND 5.0 ug/L 12/18/18 13:1 thylbenzene ND 5.0 ug/L 12/18/18 13:1 exachlorobutadiene ND 10 ug/L 12/18/18 13:1 -Hexanone ND 500 ug/L 12/18/18 13:1 sopropylbenzene ND 5.0 ug/L 12/18/18 13:1 -Isopropyltoluene ND 10 ug/L 12/18/18 13:1 elethylene Chloride ND 50 ug/L 12/18/18 13:1 -Methyl-2-pentanone (MIBK) ND 50 ug/L 12/18/18 13:1 aphthalene ND 10 ug/L 12/18/18 13:1				=			
12/18/18 13:10 12/1	,						
is-1,3-Dichloropropene ND 5.0 ug/L 12/18/18 13:1 ans-1,3-Dichloropropene ND 5.0 ug/L 12/18/18 13:1 thylbenzene ND 5.0 ug/L 12/18/18 13:1 lexachlorobutadiene ND 10 ug/L 12/18/18 13:1 -Hexanone ND 500 ug/L 12/18/18 13:1 sopropylbenzene ND 5.0 ug/L 12/18/18 13:1 -Isopropyltoluene ND 10 ug/L 12/18/18 13:1 Methyl-2-pentanone (MIBK) ND 50 ug/L 12/18/18 13:1 Iaphthalene ND 10 ug/L 12/18/18 13:1				-			
Ans-1,3-Dichloropropene ND 5.0 ug/L 12/18/18 13:10 thylbenzene ND 5.0 ug/L 12/18/18 13:10 thylbenzene ND 5.0 ug/L 12/18/18 13:10 thylbenzene ND 10 ug/L 12/18/18 13:10 thylbenzene ND 500 ug/L 12/18/18 13:10 topropylbenzene ND 500 ug/L 12/18/18 13:10 topropylbenzene ND 5.0 ug/L 12/18/18 13:10 thylbenzene ND 10 ug/L 12/18/18 13:10 thylbenzene ND 500 ug/L 12/18/18 13:10 thylbenzene ND 10 ug/L 12/18/18 13:10 thylbenzene ND 12/18/18 13:10 thylbenzene ND 10 ug/L 12/18/18 13:10 thylbenzene ND 12/18/18 13:10 thylbe	, ,			=			
thylbenzene ND 5.0 ug/L 12/18/18 13:1 exachlorobutadiene ND 10 ug/L 12/18/18 13:1 exachlorobutadiene ND 500 ug/L 12/18/18 13:1 exachlorobutadiene ND 500 ug/L 12/18/18 13:1 exachloropylbenzene ND 5.0 ug/L 12/18/18 13:1 elethylene Chloride ND 50 ug/L 12/18/18 13:1 elethylene Chloride ND 50 ug/L 12/18/18 13:1 elethylene (MIBK) ND 500 ug/L 12/18/18 13:1 eaphthalene ND 10 ug/L 12/18/18 13:1 exachloropylbenzene ND 10 ug/L 12/18/18 13:1 elethylene (MIBK) ND 500 ug/L 12/18/18 13:1 exachloropylbenzene ND 10 ug/L 12/18/18 13:1 elethylene (MIBK) ND 10 ug/L 12/18/18 13:1 exachloropylbenzene ND 10 ug/L 12/18/18	• •						
exachlorobutadiene ND 10 ug/L 12/18/18 13:1 -Hexanone ND 500 ug/L 12/18/18 13:1 sopropylbenzene ND 5.0 ug/L 12/18/18 13:1 -Isopropyltoluene ND 10 ug/L 12/18/18 13:1 Jethylene Chloride ND 50 ug/L 12/18/18 13:1 -Methyl-2-pentanone (MIBK) ND 500 ug/L 12/18/18 13:1 aphthalene ND 10 ug/L 12/18/18 13:1	· ·						
Hexanone ND 500 ug/L 12/18/18 13:1 opropylbenzene ND 5.0 ug/L 12/18/18 13:1 -Isopropyltoluene ND 10 ug/L 12/18/18 13:1 lethylene Chloride ND 50 ug/L 12/18/18 13:1 -Methyl-2-pentanone (MIBK) ND 500 ug/L 12/18/18 13:1 aphthalene ND 10 ug/L 12/18/18 13:1	•						
kopropylbenzene ND 5.0 ug/L 12/18/18 13:1 elsopropyltoluene ND 10 ug/L 12/18/18 13:1 lethylene Chloride ND 50 ug/L 12/18/18 13:1 -Methyl-2-pentanone (MIBK) ND 500 ug/L 12/18/18 13:1 aphthalene ND 10 ug/L 12/18/18 13:1						12/18/18 13:14	
Isopropyltoluene							
lethylene Chloride ND 50 ug/L 12/18/18 13:1 -Methyl-2-pentanone (MIBK) ND 500 ug/L 12/18/18 13:1 aphthalene ND 10 ug/L 12/18/18 13:1				=		12/18/18 13:14	
-Methyl-2-pentanone (MiBK) ND 500 ug/L 12/18/18 13:1 aphthalene ND 10 ug/L 12/18/18 13:1						12/18/18 13:14	
aphthalene ND 10 ug/L 12/18/18 13:1	•					12/18/18 13:14	
	Methyl-2-pentanone (MIBK)	ND	500	ug/L		12/18/18 13:14	
-Propylbenzene ND 10 ug/L 12/18/18 13:1	aphthalene	ND	10	ug/L		12/18/18 13:14	
	Propylbenzene	ND	10	ug/L		12/18/18 13:14	
tyrene ND 5.0 ug/L 12/18/18 13:1	yrene	ND	5.0	ug/L		12/18/18 13:14	

Page 10 of 41

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-3

Matrix: Water

Client Sample ID: J6038-T-25BS-121418

Date Collected: 12/14/18 10:35 Date Received: 12/14/18 16:30

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L		12/18/18 13:14	10
Tetrachloroethene	ND		5.0	ug/L		12/18/18 13:14	10
Toluene	ND		5.0	ug/L		12/18/18 13:14	10
1,2,3-Trichlorobenzene	ND		10	ug/L		12/18/18 13:14	10
1,2,4-Trichlorobenzene	ND		10	ug/L		12/18/18 13:14	10
1,1,1-Trichloroethane	ND		5.0	ug/L		12/18/18 13:14	10
1,1,2-Trichloroethane	ND		5.0	ug/L		12/18/18 13:14	10
Trichloroethene	350		5.0	ug/L		12/18/18 13:14	10
Trichlorofluoromethane	ND		10	ug/L		12/18/18 13:14	10
1,2,3-Trichloropropane	ND		10	ug/L		12/18/18 13:14	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	ug/L		12/18/18 13:14	10
1,2,4-Trimethylbenzene	ND	*	5.0	ug/L		12/18/18 13:14	10
1,3,5-Trimethylbenzene	ND		5.0	ug/L		12/18/18 13:14	10
Vinyl acetate	ND		100	ug/L		12/18/18 13:14	10
Vinyl chloride	ND		5.0	ug/L		12/18/18 13:14	10
Xylenes, Total	ND		5.0	ug/L		12/18/18 13:14	10
2,2-Dichloropropane	ND		5.0	ug/L		12/18/18 13:14	10
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	90		67 _ 130		***************************************	12/18/18 13:14	10
1,2-Dichloroethane-d4 (Surr)	104		72 _ 130			12/18/18 13:14	10
Toluene-d8 (Surr)	101		70 ₋ 130			12/18/18 13:14	10

ED_013213_00000989-00234

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-4

Matrix: Water

Client Sample ID: J6038-EB-121418

Date Collected: 12/14/18 10:55 Date Received: 12/14/18 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50		ug/L			12/17/18 16:58	
Acetone	ND		50		ug/L			12/17/18 16:58	
Benzene	ND		0.50		ug/L			12/17/18 16:58	
Dichlorobromomethane	ND		0.50		ug/L			12/17/18 16:58	
Bromobenzene	ND		1.0		ug/L			12/17/18 16:58	
Chlorobromomethane	ND		1.0		ug/L			12/17/18 16:58	
Bromoform	ND		1.0		ug/L			12/17/18 16:58	
3romomethane	ND		1.0		ug/L			12/17/18 16:58	
2-Butanone (MEK)	ND		50		ug/L			12/17/18 16:58	
-Butylbenzene	ND		1.0		ug/L			12/17/18 16:58	
ec-Butylbenzene	ND		1.0		ug/L			12/17/18 16:58	
ert-Butylbenzene	ND		1.0		ug/L			12/17/18 16:58	
Carbon disulfide	ND		5.0		ug/L			12/17/18 16:58	
Carbon tetrachloride	ND		0.50		ug/L			12/17/18 16:58	
Chlorobenzene	ND		0.50		ug/L			12/17/18 16:58	
Chloroethane	ND		1.0		ug/L			12/17/18 16:58	
Chloroform	ND		1.0		ug/L			12/17/18 16:58	
Chloromethane	ND		1.0		ug/L			12/17/18 16:58	
-Chlorotoluene	ND		0.50		ug/L			12/17/18 16:58	
Chlorotoluene	ND		0.50		ug/L			12/17/18 16:58	
Chlorodibromomethane	ND		0.50		ug/L			12/17/18 16:58	
,2-Dichlorobenzene	ND		0.50		ug/L			12/17/18 16:58	
,3-Dichlorobenzene	ND		0.50		ug/L			12/17/18 16:58	
,4-Dichlorobenzene	ND		0.50		-			12/17/18 16:58	
	ND		1.0		ug/L			12/17/18 16:58	
,3-Dichloropropane ,1-Dichloropropene	ND		0.50		ug/L			12/17/18 16:58	
·	ND		1.0		ug/L			12/17/18 16:58	
,2-Dibromo-3-Chloropropane					ug/L				
Ethylene Dibromide	ND ND		0.50 0.50		ug/L			12/17/18 16:58	
Dibromomethane					ug/L			12/17/18 16:58	
Dichlorodifluoromethane	ND		0.50		ug/L			12/17/18 16:58	
,1-Dichloroethane	ND		0.50		ug/L			12/17/18 16:58	
,2-Dichloroethane	ND		0.50		ug/L			12/17/18 16:58	
,1-Dichloroethene	ND		0.50		ug/L			12/17/18 16:58	
is-1,2-Dichloroethene	ND		0.50		ug/L			12/17/18 16:58	
rans-1,2-Dichloroethene	ND		0.50		ug/L			12/17/18 16:58	
,2-Dichloropropane	ND		0.50		ug/L			12/17/18 16:58	
is-1,3-Dichloropropene	ND		0.50		ug/L			12/17/18 16:58	
rans-1,3-Dichloropropene	ND		0.50		ug/L			12/17/18 16:58	
Ethylbenzene	ND		0.50		ug/L			12/17/18 16:58	
lexachlorobutadiene	ND		1.0		ug/L			12/19/18 12:03	
-Hexanone	ND		50		ug/L			12/17/18 16:58	
sopropylbenzene	ND		0.50		ug/L			12/17/18 16:58	
-Isopropyltoluene	ND		1.0		ug/L			12/17/18 16:58	
lethylene Chloride	ND		5.0		ug/L			12/17/18 16:58	
-Methyl-2-pentanone (MIBK)	ND		50		ug/L			12/17/18 16:58	
Naphthalene	ND		1.0		ug/L			12/19/18 12:03	
I-Propylbenzene	ND		1.0		ug/L			12/17/18 16:58	
Styrene	ND		0.50		ug/L			12/17/18 16:58	

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-4

Matrix: Water

Client Sample ID: J6038-EB-121418

Date Collected: 12/14/18 10:55 Date Received: 12/14/18 16:30

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND ND	0.50	ug/L		12/17/18 16:58	1
Tetrachloroethene	ND	0.50	ug/L		12/17/18 16:58	1
Toluene	ND	0.50	ug/L		12/17/18 16:58	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		12/19/18 12:03	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		12/19/18 12:03	1
1,1,1-Trichloroethane	ND	0.50	ug/L		12/17/18 16:58	1
1,1,2-Trichloroethane	ND	0.50	ug/L		12/17/18 16:58	1
Trichloroethene	ND	0.50	ug/L		12/17/18 16:58	1
Trichlorofluoromethane	ND	1.0	ug/L		12/17/18 16:58	1
1,2,3-Trichloropropane	ND	1.0	ug/L		12/17/18 16:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		12/17/18 16:58	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		12/17/18 16:58	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		12/17/18 16:58	1
Vinyl acetate	ND	10	ug/L		12/17/18 16:58	1
Vinyl chloride	ND	0.50	ug/L		12/17/18 16:58	1
Xylenes, Total	ND	0.50	ug/L		12/17/18 16:58	1
2,2-Dichloropropane	ND	0.50	ug/L		12/17/18 16:58	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104	67 _ 130			12/17/18 16:58	1
4-Bromofluorobenzene	98	67 _ 130			12/19/18 12:03	1
1,2-Dichloroethane-d4 (Surr)	104	72 _ 130			12/17/18 16:58	1
1,2-Dichloroethane-d4 (Surr)	104	72 - 130			12/19/18 12:03	
Toluene-d8 (Surr)	106	70 _ 130			12/17/18 16:58	1
Toluene-d8 (Surr)	98	70 ₋ 130			12/19/18 12:03	1

Surrogate Summary

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surro	ate Recovery (Acceptance Limits)
BFB	DCA	TOL	
D (67-130)	(72-130)	(70-130)	
NK-121418 90	109	101	
121418 86	104	101	
121418 90	104	101	
18 104	104	106	
18 98	104	98	
nple 108	106	108	
nple 101	102	103	
nple 103	97	103	
mple 102	100	99	
nple Dup 107	104	106	
mple Dup 104	102	104	
nple Dup 102	100	103	
nple Dup 101	102	98	
106	103	103	
93	105	100	
95	107	101	
99	103	98	

BFB = 4-Bromofluorobenzene

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Project/Site: TRW Microwave

Client: AECOM Technical Services Inc.

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 720-257057/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 257057

	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND -	0.50	ug/L			12/17/18 10:18	
Acetone	ND	50	ug/L			12/17/18 10:18	
Benzene	ND	0.50	ug/L			12/17/18 10:18	
Dichlorobromomethane	ND	0.50	ug/L			12/17/18 10:18	
Bromobenzene	ND	1.0	ug/L			12/17/18 10:18	
Chlorobromomethane	ND	1.0	ug/L			12/17/18 10:18	
Bromoform	ND	1.0	ug/ L			12/17/18 10:18	
Bromomethane	ND	1.0	ug/L			12/17/18 10:18	
2-Butanone (MEK)	ND	50	ug/L			12/17/18 10:18	,
n-Butylbenzene	ND	1.0	ug/L			12/17/18 10:18	
sec-Butylbenzene	ND	1.0	ug/L			12/17/18 10:18	
tert-Butylbenzene	ND	1.0	ug/L			12/17/18 10:18	,
Carbon disulfide	ND	5.0	ug/L			12/17/18 10:18	,
Carbon tetrachloride	ND	0.50	ug/L			12/17/18 10:18	
Chlorobenzene	ND	0.50	ug/L			12/17/18 10:18	,
Chloroethane	ND	1.0	ug/L			12/17/18 10:18	
Chloroform	ND	1.0	ug/L			12/17/18 10:18	
Chloromethane	ND	1.0	ug/L			12/17/18 10:18	,
2-Chlorotoluene	ND	0.50	ug/L			12/17/18 10:18	,
4-Chlorotoluene	ND	0.50	ug/L			12/17/18 10:18	,
Chlorodibromomethane	ND	0.50	ug/L			12/17/18 10:18	,
		0.50				12/17/18 10:18	
1,2-Dichlorobenzene	ND		ug/L				
1,3-Dichlorobenzene	ND	0.50	ug/L			12/17/18 10:18	,
1,4-Dichlorobenzene	ND	0.50	ug/ L			12/17/18 10:18	
1,3-Dichloropropane	DND	1.0	ug/L			12/17/18 10:18	,
1,1-Dichloropropene	ND	0.50	ug/L			12/17/18 10:18	,
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			12/17/18 10:18	
Ethylene Dibromide	ND	0.50	ug/L			12/17/18 10:18	
Dibromomethane	ND	0.50	ug/ L			12/17/18 10:18	,
Dichlorodifluoromethane	ND	0.50	ug/L			12/17/18 10:18	•
1,1-Dichloroethane	ND	0.50	ug/L			12/17/18 10:18	•
1,2-Dichloroethane	ND	0.50	ug/L			12/17/18 10:18	,
1,1-Dichloroethene	ND	0.50	ug/L			12/17/18 10:18	•
cis-1,2-Dichloroethene	ND	0.50	ug/L			12/17/18 10:18	•
trans-1,2-Dichloroethene	ND	0.50	ug/L			12/17/18 10:18	•
1,2-Dichloropropane	ND	0.50	ug/L			12/17/18 10:18	,
cis-1,3-Dichloropropene	ND	0.50	ug/L			12/17/18 10:18	•
trans-1,3-Dichloropropene	ND	0.50	ug/L			12/17/18 10:18	•
Ethylbenzene	ND	0.50	ug/L			12/17/18 10:18	•
Hexachlorobutadiene	ND	1.0	ug/L			12/17/18 10:18	•
2-Hexanone	ND	50	ug/ L			12/17/18 10:18	•
Isopropylbenzene	ND	0.50	ug/L			12/17/18 10:18	•
4-Isopropyltoluene	ND	1.0	ug/L			12/17/18 10:18	,
Methylene Chloride	ND	5.0	ug/L			12/17/18 10:18	•
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L			12/17/18 10:18	•
Naphthalene	ND	1.0	ug/L			12/17/18 10:18	
N-Propylbenzene	ND	1.0	ug/ L			12/17/18 10:18	•
Styrene	ND	0.50	ug/L			12/17/18 10:18	

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-257057/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 257057

мв мв

	410	MID						
Analyte	Result	Qualifier RI	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.50)	ug/L			12/17/18 10:18	1
1,1,2,2-Tetrachloroethane	ND	0.56)	ug/L			12/17/18 10:18	1
Tetrachloroethene	ND	0.56)	ug/L			12/17/18 10:18	1
Toluene	ND	0.56)	ug/L			12/17/18 10:18	1
1,2,3-Trichlorobenzene	ND	1.0)	ug/L			12/17/18 10:18	1
1,2,4-Trichlorobenzene	ND	1.0)	ug/L			12/17/18 10:18	1
1,1,1-Trichloroethane	ND	0.50)	ug/L			12/17/18 10:18	1
1,1,2-Trichloroethane	ND	0.50)	ug/L			12/17/18 10:18	1
Trichloroethene	ND	0.56)	ug/L			12/17/18 10:18	1
Trichlorofluoromethane	ND	1.0)	ug/L			12/17/18 10:18	1
1,2,3-Trichloropropane	ND	1.0)	ug/L			12/17/18 10:18	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50)	ug/L			12/17/18 10:18	1
1,2,4-Trimethylbenzene	ND	0.56)	ug/L			12/17/18 10:18	1
1,3,5-Trimethylbenzene	ND	0.56)	ug/L			12/17/18 10:18	1
Vinyl acetate	ND	10)	ug/L			12/17/18 10:18	1
Vinyl chloride	ND	0.56)	ug/L			12/17/18 10:18	1
Xylenes, Total	ND	0.50)	ug/L			12/17/18 10:18	1
2,2-Dichloropropane	ND	0.5)	ug/L			12/17/18 10:18	1

MB MB

	70720	777.20						
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	106		67 _ 130	_		12/17/18 10:18	1	
1,2-Dichloroethane-d4 (Surr)	103		72 _ 130			12/17/18 10:18	1	
Toluene-d8 (Surr)	103		70 130			12/17/18 10:18	1	

Lab Sample ID: LCS 720-257057/5 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 257057

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	28.5		ug/L		114	70 _ 130	
Acetone	125	138		ug/L		111	61 - 147	
Benzene	25.0	26.3		ug/L		105	79 - 119	
Dichlorobromomethane	25.0	27.2		ug/L		109	81 ₋ 130	
Bromobenzene	25.0	25.9		ug/L		104	77 _ 117	
Chlorobromomethane	25.0	24.7		ug/L		99	81 _ 122	
Bromoform	25.0	26.0		ug/L		104	75 ₋ 127	
Bromomethane	25.0	21.9		ug/L		88	70 - 132	
2-Butanone (MEK)	125	133		ug/L		107	66 - 133	
n-Butylbenzene	25.0	27.4		ug/L		110	78 ₋ 119	
sec-Butylbenzene	25.0	26.7		ug/L		107	78 ₋ 118	
tert-Butylbenzene	25.0	26.8		ug/L		107	78 ₋ 118	
Carbon disulfide	25.0	25.9		ug/L		104	64 _ 127	
Carbon tetrachloride	25.0	26.7		ug/L		107	72 _ 142	
Chlorobenzene	25.0	25.6		ug/L		102	76 ₋ 116	
Chloroethane	25.0	22.3		ug/L		89	70 ₋ 131	
Chloroform	25.0	25.9		ug/L		104	82 _ 119	
Chloromethane	25.0	21.2		ug/L		85	49 - 134	
2-Chlorotoluene	25.0	27.0		ug/L		108	75 ₋ 115	

TestAmerica Pleasanton

Page 16 of 41 12/21/2018

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-257057/5 Matrix: Water					Client	Sample	e ID: Lab Control Samp Prep Type: Total/N
Analysis Batch: 257057							
	Spike		LCS		_	0.5	%Rec.
Analyte 4-Chlorotoluene	Added 25.0	27.4	Qualifier	Unit	D	%Rec	Limits 73 _ 119
Chlorodibromomethane	25.0	27.2		ug/L		110 109	77 ₋ 133
	25.0			ug/L		109	77 ₋ 133
1,2-Dichlorobenzene	25.0	25.5 25.3		ug/L		102	76 - 116
1,3-Dichlorobenzene 1,4-Dichlorobenzene	25.0	25.6		ug/L ug/L		101	76 ₋ 116
	25.0	27.1				102	77 - 117
1,3-Dichloropropane	25.0	26.6		ug/L		106	83 ₋ 130
1,1-Dichloropropene 1,2-Dibromo-3-Chloropropane	25.0	25.3		ug/L		100	74 ₋ 126
Ethylene Dibromide	25.0	26.6		ug/L		101	80 - 121
Dibromomethane	25.0			ug/L			
		25.5		ug/L		102 83	79 ₋ 117
Dichlorodifluoromethane	25.0	20.8		ug/L			21 ₋ 150 77 ₋ 119
1,1-Dichloroethane	25.0	26.9		ug/L		108	
1,2-Dichloroethane	25.0 25.0	26.1 25.3		ug/L		104	73 - 122
1,1-Dichloroethene				ug/L		101	69 - 119
cis-1,2-Dichloroethene	25.0	26.1		ug/L		104	77 ₋ 117 79 ₋ 117
trans-1,2-Dichloroethene	25.0	24.9		ug/L		100	
1,2-Dichloropropane	25.0	27.5		ug/L		110	79 ₋ 119 82 ₋ 119
cis-1,3-Dichloropropene	25.0 25.0	29.0 28.5		ug/L		116	76 ₋ 122
trans-1,3-Dichloropropene		26.4		ug/L		114	76 - 122 77 - 117
Ethylbenzene	25.0 25.0	27.4		ug/L		106	77 - 117 78 - 140
Hexachlorobutadiene 2-Hexanone	125	143		ug/L		110 115	78 - 140 63 - 140
	25.0	27.2		ug/L		109	77 ₋ 130
Isopropylbenzene	25.0	26.6		ug/L		109	80 ₋ 120
4-Isopropyltoluene	25.0	26.0		ug/L		107	75 ₋ 117
Methylene Chloride	125	142		ug/L		113	75 - 117 66 - 140
4-Methyl-2-pentanone (MIBK) Naphthalene	25.0	26.1		ug/L		104	81 - 121
N-Propylbenzene	25.0	27.4		ug/L		110	77 ₋ 117
Styrene	25.0	28.1		ug/L		113	76 ₋ 116
1,1,1,2-Tetrachloroethane	25.0	26.5		ug/L		106	81 - 121
1,1,2,2-Tetrachioroethane	25.0	25.7		ug/L ug/L		103	70 - 115
Tetrachloroethene	25.0	26.1		ug/L		103	81 ₋ 130
Toluene	25.0	26.2		ug/L		105	75 ₋ 120
1,2,3-Trichlorobenzene	25.0	26.1		ug/L		103	87 ₋ 123
1,2,4-Trichlorobenzene	25.0	26.9		ug/L		104	78 ₋ 120
1,1,1-Trichloroethane	25.0	26.5		ug/L		106	74 - 130
1,1,2-Trichloroethane	25.0	27.0		ug/L		108	80 ₋ 117
Trichloroethene	25.0	25.1				100	80 - 177
Trichlorofluoromethane	25.0	25.1		ug/L		103	75 ₋ 141
1,2,3-Trichloropropane	25.0	25.4		ug/L ug/L		103	77 ₋ 120
·	25.0	25.4				102	70 ₋ 133
1,1,2-Trichloro-1,2,2-trifluoroetha	23.0	25.2		ug/L		101	70 - 100
1,2,4-Trimethylbenzene	25.0	27.8		ug/L		111	75 ₋ 115
1,3,5-Trimethylbenzene	25.0	27.9		ug/L		111	77 ₋ 117
Vinyl acetate	25.0	28.5		ug/L		114	50 ₋ 126
Vinyl chloride	25.0	20.5		ug/L		82	58 ₋ 138
m-Xylene & p-Xylene	25.0	26.8		ug/L		107	74 ₋ 119
o-Xylene	25.0	26.8		ug/L		107	77 ₋ 118

QC Sample Results

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-257057/5 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 257057

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec 2,2-Dichloropropane 25.0 28.4 ug/L 114 74 - 156

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	108		67 _ 130
1,2-Dichloroethane-d4 (Surr)	106		72 _ 130
Toluene-d8 (Surr)	108		70 - 130

Lab Sample ID: LCSD 720-257057/6 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 257057							J • • • • • • • • • • • • • • • • • • •	
•	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	27.7	ug/L		111	70 - 130	3	20
Acetone	125	135	ug/L		108	61 - 147	3	30
Benzene	25.0	26.0	ug/L		104	79 - 119	1	20
Dichlorobromomethane	25.0	26.6	ug/L		106	81 - 130	2	20
Bromobenzene	25.0	26.1	ug/L		105	77 _ 117	1	20
Chlorobromomethane	25.0	24.4	ug/L		97	81 - 122	1	20
Bromoform	25.0	25.8	ug/L		103	75 ₋ 127	1	20
Bromomethane	25.0	21.4	ug/L		86	70 - 132	2	20
2-Butanone (MEK)	125	132	ug/ L		105	66 - 133	1	22
n-Butylbenzene	25.0	28.1	ug/L		112	78 - 119	3	20
sec-Butylbenzene	25.0	27.1	ug/ L		108	78 - 118	1	20
tert-Butylbenzene	25.0	27.3	ug/L		109	78 ₋ 118	2	20
Carbon disulfide	25.0	25.8	ug/L		103	64 - 127	0	20
Carbon tetrachloride	25.0	26.6	ug/L		107	72 _ 142	0	20
Chlorobenzene	25.0	25.6	ug/ L		103	76 ₋ 116	0	20
Chloroethane	25.0	21.5	ug/L		86	70 - 131	3	20
Chloroform	25.0	25.5	ug/L		102	82 - 119	1	20
Chloromethane	25.0	21.0	ug/L		84	49 - 134	1	20
2-Chlorotoluene	25.0	27.2	ug/L		109	75 ₋ 115	1	20
4-Chlorotoluene	25.0	27.4	ug/ L		109	73 - 119	0	20
Chlorodibromomethane	25.0	26.7	ug/L		107	77 - 133	2	20
1,2-Dichlorobenzene	25.0	26.0	ug/ L		104	77 - 117	2	20
1,3-Dichlorobenzene	25.0	25.7	ug/L		103	76 - 116	1	20
1,4-Dichlorobenzene	25.0	25.6	ug/L		102	76 ₋ 116	0	20
1,3-Dichloropropane	25.0	26.2	ug/L		105	77 _ 117	3	20
1,1-Dichloropropene	25.0	26.6	ug/ L		106	83 _ 130	0	20
1,2-Dibromo-3-Chloropropane	25.0	26.1	ug/L		104	74 _ 126	3	20
Ethylene Dibromide	25.0	25.9	ug/L		104	80 _ 121	3	20
Dibromomethane	25.0	25.4	ug/L		102	79 ₋ 117	0	20
Dichlorodifluoromethane	25.0	21.1	ug/L		84	21 - 150	2	20
1,1-Dichloroethane	25.0	26.7	ug/L		107	77 ₋ 119	1	20
1,2-Dichloroethane	25.0	25.8	ug/L		103	73 - 122	1	20
1,1-Dichloroethene	25.0	24.9	ug/L		100	69 _ 119	2	20
cis-1,2-Dichloroethene	25.0	25.9	ug/L		103	77 - 117	1	20
trans-1,2-Dichloroethene	25.0	25.0	ug/L		100	79 - 117	0	20
1,2-Dichloropropane	25.0	27.0	ug/L		108	79 ₋ 119	2	20

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-257057/6 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 257057					•		
	Spike	LCSD	LCSD		%Rec.		RPD
Analyte	Added	Result	Qualifier Un	it D %Rec	Limits	RPD	Limit
cis-1,3-Dichloropropene	25.0	28.2	ug/	L 113	82 - 119	3	20
trans-1,3-Dichloropropene	25.0	28.0	ug/	L 112	76 - 122	2	20
Ethylbenzene	25.0	26.4	ug/	L 106	77 - 117	0	20
Hexachlorobutadiene	25.0	28.6	ug/	L 114	78 ₋ 140	4	20
2-Hexanone	125	141	ug/	L 113	63 _ 140	2	24
Isopropylbenzene	25.0	27.3	ug/	L 109	77 - 130	0	20
4-Isopropyltoluene	25.0	27.2	ug/	L 109	80 _ 120	2	20
Methylene Chloride	25.0	25.4	ug/	L 101	75 ₋ 117	2	20
4-Methyl-2-pentanone (MIBK)	125	138	ug/	L 110	66 _ 140	3	21
Naphthalene	25.0	27.0	ug/	L 108	81 - 121	4	20
N-Propylbenzene	25.0	27.8	ug/	L 111	77 - 117	1	20
Styrene	25.0	28.1	ug/	L 113	76 ₋ 116	0	20
1,1,1,2-Tetrachloroethane	25.0	26.4	ug/	L 106	81 - 121	0	20
1,1,2,2-Tetrachloroethane	25.0	25.8	ug/	L 103	70 ₋ 115	0	20
Tetrachloroethene	25.0	25.9	ug/	L 103	81 - 130	1	20
Toluene	25.0	26.2	ug/	L 105	75 - 120	0	20
1,2,3-Trichlorobenzene	25.0	27.2	ug/	L 109	87 _ 123	4	20
1,2,4-Trichlorobenzene	25.0	27.8	ug/	L 111	78 ₋ 120	3	20
1,1,1-Trichloroethane	25.0	26.5	ug/	L 106	74 - 130	0	20
1,1,2-Trichloroethane	25.0	26.2	ug/	L 105	80 _ 117	3	20
Trichloroethene	25.0	25.1	ug/	L 100	80 - 123	0	20
Trichlorofluoromethane	25.0	26.0	ug/	L 104	75 ₋ 141	0	20
1,2,3-Trichloropropane	25.0	25.5	ug/	L 102	77 _ 120	0	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.3	ug/	L 101	70 _ 133	0	20
ne							
1,2,4-Trimethylbenzene	25.0	28.0	ug/	L 112	75 - 115	1	20
1,3,5-Trimethylbenzene	25.0	28.2	ug/	L 113	77 _ 117	1	20
Vinyl acetate	25.0	27.8	ug/	L 111	50 _ 126	2	20
Vinyl chloride	25.0	20.3	ug/	L 81	58 - 138	1	20
m-Xylene & p-Xylene	25.0	26.7	ug/	L 107	74 - 119	0	20
o-Xylene	25.0	26.7	ug/	L 107	77 - 118	0	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		67 - 130
1,2-Dichloroethane-d4 (Surr)	104		72 - 130
Toluene-d8 (Surr)	106		70 - 130

2,2-Dichloropropane

Lab Sample ID: MB 720-257059/4 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 257059

28.2

	MB	MB						
Analyte	Result	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.5	<u> </u>	ug/L			12/17/18 10:36	1
Acetone	ND	5	0	ug/L			12/17/18 10:36	1
Benzene	ND	0.5	0	ug/L			12/17/18 10:36	1
Dichlorobromomethane	ND	0.5	o	ug/L			12/17/18 10:36	1
Bromobenzene	ND	1.	ס	ug/L			12/17/18 10:36	1

TestAmerica Pleasanton

74 - 156

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-257059/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

	MP	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorobromomethane	ND		1.0		ug/L			12/17/18 10:36	
Bromoform	ND		1.0		ug/L			12/17/18 10:36	
Bromomethane	ND		1.0		ug/ L			12/17/18 10:36	
2-Butanone (MEK)	ND		50		ug/L			12/17/18 10:36	
n-Butylbenzene	ND		1.0		ug/L			12/17/18 10:36	
sec-Butylbenzene	ND		1.0		ug/L			12/17/18 10:36	
tert-Butylbenzene	ND		1.0		ug/L			12/17/18 10:36	
Carbon disulfide	ND		5.0		ug/L			12/17/18 10:36	
Carbon tetrachloride	ND		0.50		ug/L			12/17/18 10:36	
Chlorobenzene	ND		0.50		ug/L			12/17/18 10:36	
Chloroethane	ND		1.0		ug/L			12/17/18 10:36	
Chloroform	ND		1.0		ug/L			12/17/18 10:36	
Chloromethane	ND		1.0		ug/ L			12/17/18 10:36	
2-Chlorotoluene	ND		0.50		ug/L			12/17/18 10:36	
4-Chlorotoluene	ND		0.50		ug/L			12/17/18 10:36	
Chlorodibromomethane	ND		0.50		ug/L			12/17/18 10:36	
1,2-Dichlorobenzene	ND		0.50		ug/L			12/17/18 10:36	
1,3-Dichlorobenzene	ND		0.50		ug/L			12/17/18 10:36	
1,4-Dichlorobenzene	ND		0.50		ug/L			12/17/18 10:36	
1,3-Dichloropropane	ND		1.0		ug/L			12/17/18 10:36	
1,1-Dichloropropene	ND		0.50		ug/L			12/17/18 10:36	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			12/17/18 10:36	
Ethylene Dibromide	ND		0.50		ug/L			12/17/18 10:36	
Dibromomethane	ND		0.50		ug/L			12/17/18 10:36	
Dichlorodifluoromethane	ND		0.50		ug/L			12/17/18 10:36	
1,1-Dichloroethane	ND		0.50		ug/L			12/17/18 10:36	
1,2-Dichloroethane	ND		0.50		ug/L			12/17/18 10:36	
1,1-Dichloroethene	ND		0.50		ug/L			12/17/18 10:36	
cis-1,2-Dichloroethene	ND		0.50		ug/L			12/17/18 10:36	
trans-1,2-Dichloroethene	ND		0.50		ug/L			12/17/18 10:36	
1,2-Dichloropropane	ND		0.50		ug/L			12/17/18 10:36	
cis-1,3-Dichloropropene	ND		0.50		ug/L			12/17/18 10:36	
trans-1,3-Dichloropropene	ND		0.50		ug/L			12/17/18 10:36	
Ethylbenzene	ND		0.50		ug/L			12/17/18 10:36	
, Hexachlorobutadiene	ND		1.0		ug/L			12/17/18 10:36	
2-Hexanone	ND		50		ug/L			12/17/18 10:36	
Isopropylbenzene	ND		0.50		ug/L			12/17/18 10:36	
4-Isopropyltoluene	ND		1.0		ug/L			12/17/18 10:36	
Methylene Chloride	ND		5.0		ug/L			12/17/18 10:36	
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			12/17/18 10:36	
Naphthalene	ND		1.0		ug/L			12/17/18 10:36	
N-Propylbenzene	ND		1.0		ug/L			12/17/18 10:36	
Styrene	ND		0.50		ug/L			12/17/18 10:36	
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			12/17/18 10:36	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			12/17/18 10:36	
Tetrachloroethene	ND		0.50		ug/L ug/L			12/17/18 10:36	
	ND		0.50		=				
Toluene 1,2,3-Trichlorobenzene	ND		1.0		ug/L ug/L			12/17/18 10:36 12/17/18 10:36	

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-257059/ Matrix: Water	4						Client Sa	ample ID: Metho Prep Type: T	
Analysis Batch: 257059									
•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		1.0		ug/L			12/17/18 10:36	1
1,1,1-Trichloroethane	ND		0.50		ug/L			12/17/18 10:36	1
1,1,2-Trichloroethane	ND		0.50		ug/L			12/17/18 10:36	1
Trichloroethene	ND		0.50		ug/L			12/17/18 10:36	1
Trichlorofluoromethane	ND		1.0		ug/L			12/17/18 10:36	1
1,2,3-Trichloropropane	ND		1.0		ug/L			12/17/18 10:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			12/17/18 10:36	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			12/17/18 10:36	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			12/17/18 10:36	1
Vinyl acetate	ND		10		ug/L			12/17/18 10:36	1
Vinyl chloride	ND		0.50		ug/L			12/17/18 10:36	1
Xylenes, Total	ND		0.50		ug/L			12/17/18 10:36	1
2,2-Dichloropropane	ND		0.50		ug/L			12/17/18 10:36	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		67 - 130			_		12/17/18 10:36	1
1,2-Dichloroethane-d4 (Surr)	105		72 - 130					12/17/18 10:36	1
Toluene-d8 (Surr)	100		70 - 130					12/17/18 10:36	1

Lab Sample ID: LCS 720-257059/5 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 257059							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	26.3		ug/L		105	70 ₋ 130
Acetone	125	126		ug/L		101	61 ₋ 147
Benzene	25.0	25.4		ug/L		102	79 - 119
Dichlorobromomethane	25.0	26.5		ug/L		106	81 ₋ 130
Bromobenzene	25.0	25.3		ug/L		101	77 ₋ 117
Chlorobromomethane	25.0	26.5		ug/L		106	81 ₋ 122
Bromoform	25.0	26.7		ug/L		107	75 ₋ 127
Bromomethane	25.0	23.3		ug/L		93	70 ₋ 132
2-Butanone (MEK)	125	135		ug/L		108	66 ₋ 133
n-Butylbenzene	25.0	28.7		ug/L		115	78 ₋ 119
sec-Butylbenzene	25.0	28.3		ug/L		113	78 ₋ 118
tert-Butylbenzene	25.0	27.2		ug/L		109	78 ₋ 118
Carbon disulfide	25.0	26.4		ug/L		106	64 - 127
Carbon tetrachloride	25.0	26.2		ug/L		105	72 - 142
Chlorobenzene	25.0	25.9		ug/L		103	76 ₋ 116
Chloroethane	25.0	24.0		ug/L		96	70 ₋ 131
Chloroform	25.0	26.2		ug/L		105	82 _ 119
Chloromethane	25.0	23.9		ug/L		96	49 _ 134
2-Chlorotoluene	25.0	26.3		ug/L		105	75 ₋ 115
4-Chlorotoluene	25.0	26.5		ug/L		106	73 ₋ 119
Chlorodibromomethane	25.0	27.1		ug/L		108	77 ₋ 133
1,2-Dichlorobenzene	25.0	25.2		ug/L		101	77 ₋ 117
1,3-Dichlorobenzene	25.0	25.7		ug/L		103	76 ₋ 116
1,4-Dichlorobenzene	25.0	25.7		ug/L		103	76 ₋ 116

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-2576 Matrix: Water	059/5					Client	Sample	ID: Lab Control Samp Prep Type: Total/N
Analysis Batch: 257059								riep type, total/N
Analysis batch. 251003			Spike	LCS	LCS			%Rec.
Analyte			Added	Result	Qualifier Unit	D	%Rec	Limits
1,3-Dichloropropane			25.0	26.3	ug/L		105	77 _ 117
1,1-Dichloropropene			25.0	26.8	ug/L		107	83 _ 130
1,2-Dibromo-3-Chloropropane			25.0	26.6	ug/L		107	74 ₋ 126
Ethylene Dibromide			25.0	27.3	ug/L		109	80 ₋ 121
Dibromomethane			25.0	26.3	ug/L		105	79 ₋ 117
Dichlorodifluoromethane			25.0	24.0	ug/L		96	21 - 150
1,1-Dichloroethane			25.0	26.2	ug/L		105	77 ₋ 119
1,2-Dichloroethane			25.0	25.8	ug/L		103	73 ₋ 122
1,1-Dichloroethene			25.0	25.0	ug/L		100	69 ₋ 119
cis-1,2-Dichloroethene			25.0	26.4	ug/L		105	77 ₋ 117
trans-1,2-Dichloroethene			25.0	26.0	ug/L		104	79 ₋ 117
1,2-Dichloropropane			25.0	26.2	ug/L		105	79 ₋ 119
cis-1,3-Dichloropropene			25.0	26.8	ug/L		107	82 _ 119
trans-1,3-Dichloropropene			25.0	27.9	ug/L		112	76 ₋ 122
Ethylbenzene			25.0	27.4	ug/L		110	77 ₋ 117
Hexachlorobutadiene			25.0	25.7	ug/L		103	78 ₋ 140
2-Hexanone			125	140	ug/L		112	63 ₋ 140
Isopropylbenzene			25.0	29.0	ug/L		116	77 ₋ 130
4-Isopropyltoluene			25.0	28.0	ug/L		112	80 - 120
Methylene Chloride			25.0	25.8	ug/L		103	75 ₋ 117
4-Methyl-2-pentanone (MIBK)			125	140	ug/L		112	66 ₋ 140
Naphthalene			25.0	27.6	ug/L		110	81 ₋ 121
N-Propylbenzene			25.0	28.3	ug/L		113	77 _ 117
Styrene			25.0	28.7	ug/L		115	76 ₋ 116
1,1,1,2-Tetrachloroethane			25.0	26.4	ug/L		105	81 ₋ 121
1,1,2,2-Tetrachloroethane			25.0	25.0	ug/L		100	70 - 115
Tetrachloroethene			25.0	27.0	ug/L		108	81 - 130
Toluene			25.0	24.1	ug/L		96	75 ₋ 120
1,2,3-Trichlorobenzene			25.0	26.4	ug/L		105	87 ₋ 123
1,2,4-Trichlorobenzene			25.0	27.0	ug/L		108	78 ₋ 120
1,1,1-Trichloroethane			25.0	26.4	ug/L		106	74 ₋ 130
1,1,2-Trichloroethane			25.0	26.7	ug/L		107	80 - 117
Trichloroethene			25.0	26.8	ug/L		107	80 ₋ 123
Trichlorofluoromethane			25.0	24.6	ug/L		99	75 ₋ 141
1,2,3-Trichloropropane			25.0	25.8	ug/L		103	77 _ 120
1,1,2-Trichloro-1,2,2-trifluoroetha			25.0	26.4	ug/L		106	70 _ 133
ne							-	
1,2,4-Trimethylbenzene			25.0	28.3	ug/L		113	75 ₋ 115
1,3,5-Trimethylbenzene			25.0	27.8	ug/L		111	77 - 117
Vinyl acetate			25.0	27.9	ug/L		112	50 ₋ 126
Vinyl chloride			25.0	23.8	ug/L		95	58 ₋ 138
m-Xylene & p-Xylene			25.0	27.2	ug/L		109	74 _ 119
o-Xylene			25.0	27.5	ug/L		110	77 ₋ 118
2,2-Dichloropropane			25.0	28.1	ug/L		112	74 - 156
	LCS	LCS						
Surrogate	%Recovery		Limits					
4-Bromofluorobenzene	101		67 - 130					
1,2-Dichloroethane-d4 (Surr)	102		72 - 130					

QC Sample Results

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-257059/5

Lab Sample ID: LCSD 720-257059/6

Matrix: Water

Matrix: Water

Analysis Batch: 257059

LCS LCS

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 103 70 - 130

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 257059	0. "					0/ D		
Analyte	Spike Added		LCSD Qualifier Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Methyl tert-butyl ether	25.0	26.3	ug/L		105	70 ₋ 130	0	20
Acetone	125	133	ug/L		106	61 ₋ 147	5	30
Benzene	25.0	25.4	ug/L		101	79 - 119	0	20
Dichlorobromomethane	25.0	26.3	.		105	81_130	1	20
Bromobenzene	25.0	25.4	ug/L		103	77 ₋ 117	0	20
Chlorobromomethane	25.0	26.3	ug/L		105	81 ₋ 122	1	20
Bromoform	25.0	27.2	ug/L		109	75 - 127		20
Bromomethane	25.0	23.9	ug/L		96	70 ₋ 132	2	20
2-Butanone (MEK)	125	136	ug/L ug/L		109	66 ₋ 133	1	22
n-Butylbenzene	25.0	28.7	ug/L		115	78 ₋ 119		20
•	25.0	28.3			113	78 ₋ 118	0	20
sec-Butylbenzene tert-Butylbenzene	25.0	27.5	ug/L		110	78 ₋ 118	1	20
Carbon disulfide	25.0	25.9	ug/L ug/L		104	64 ₋ 127	2	20
Carbon tetrachloride	25.0	26.0	ug/L		104	72 - 142	1	20
Chlorobenzene	25.0	26.0	ug/L		104	72 - 142 76 - 116	1	20
Chloroethane	25.0	24.8	ug/L		99	70 - 110 70 - 131	3	20
Chloroform	25.0	25.8	ug/L		103	82 ₋ 119	2	20
Chloromethane	25.0	24.0	ug/L		96	49 - 134	0	20
2-Chlorotoluene	25.0	26.3	ug/L		105	75 - 115	0	20
4-Chlorotoluene	25.0	26.6	ug/L		106	73 - 119 73 - 119	0	20
Chlorodibromomethane	25.0	27.4	ug/L		110	73 - 119 77 - 133	1	20
1,2-Dichlorobenzene	25.0	25.6	ug/L		103	77 ₋ 133	2	20
1,3-Dichlorobenzene	25.0	25.7	ug/L		103	76 ₋ 116	0	20
1,4-Dichlorobenzene	25.0	25.7	ug/L		103	76 - 116 76 - 116	1	20
1,3-Dichloropropane	25.0	26.4	ug/L		104	70 - 110 77 - 117	1	20
1,1-Dichloropropene	25.0	26.6	ug/L		106	83 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	27.7	ug/L		111	74 ₋ 126	4	20
Ethylene Dibromide	25.0	27.3	ug/L		109	80 ₋ 121	0	20
Dibromomethane	25.0	26.2	ug/L		105	79 - 117	0	20
Dichlorodifluoromethane	25.0	23.7	ug/L		95	21 - 150	1	20
1,1-Dichloroethane	25.0	26.1	ug/L		104	77 ₋ 119		20
1,2-Dichloroethane	25.0	25.4	ug/L		102	77 - 119	1	20
1.1-Dichloroethene	25.0	25.2	ug/L		101	69_119	1	20
cis-1,2-Dichloroethene	25.0	26.2	ug/L		105	77 - 117		20
trans-1,2-Dichloroethene	25.0	25.5	ug/L		102	77 - 117 79 - 117	2	20
1,2-Dichloropropane	25.0 25.0	26.1	ug/L		102	79 - 117 79 - 119	0	20
cis-1,3-Dichloropropene	25.0	27.4			104	79 - 119 82 - 119		20
trans-1,3-Dichloropropene	25.0	28.0	ug/L ug/L		112	76 - 122	0	20
Ethylbenzene	25.0	27.4	ug/L		110	70 - 122 77 - 117	0	20
Hexachlorobutadiene		26.0			104	77 - 117 78 - 140		20
	25.0		ug/L				1	
2-Hexanone	125	142	ug/L		114	63 - 140	1	24

Page 23 of 41

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-257059/6 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Matrix: Water

Analysis Batch: 257059									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Isopropylbenzene	25.0	28.9		ug/L		116	77 - 130	0	20
4-Isopropyltoluene	25.0	28.0		ug/L		112	80 - 120	0	20
Methylene Chloride	25.0	25.9		ug/L		103	75 - 117	0	20
4-Methyl-2-pentanone (MIBK)	125	141		ug/L		113	66 - 140	1	21
Naphthalene	25.0	28.3		ug/L		113	81 - 121	3	20
N-Propylbenzene	25.0	28.2		ug/L		113	77 - 117	0	20
Styrene	25.0	28.5		ug/L		114	76 - 116	1	20
1,1,1,2-Tetrachloroethane	25.0	26.6		ug/L		106	81 _ 121	1	20
1,1,2,2-Tetrachloroethane	25.0	25.4		ug/L		101	70 - 115	1	20
Tetrachloroethene	25.0	26.4		ug/L		106	81 _ 130	2	20
Toluene	25.0	24.3		ug/L		97	75 _ 120	1	20
1,2,3-Trichlorobenzene	25.0	26.9		ug/L		108	87 - 123	2	20
1,2,4-Trichlorobenzene	25.0	27.6		ug/L		110	78 - 120	2	20
1,1,1-Trichloroethane	25.0	26.2		ug/L		105	74 - 130	1	20
1,1,2-Trichloroethane	25.0	26.5		ug/L		106	80 - 117	0	20
Trichloroethene	25.0	26.6		ug/L		106	80 - 123	1	20
Trichlorofluoromethane	25.0	23.1		ug/L		92	75 _ 141	7	20
1,2,3-Trichloropropane	25.0	26.4		ug/L		106	77 - 120	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.2		ug/L		105	70 - 133	1	20
ne									
1,2,4-Trimethylbenzene	25.0	28.2		ug/L		113	75 - 115	0	20
1,3,5-Trimethylbenzene	25.0	28.0		ug/L		112	77 - 117	1	20
Vinyl acetate	25.0	27.5		ug/L		110	50 - 126	1	20
Vinyl chloride	25.0	22.9		ug/L		92	58 - 138	4	20
m-Xylene & p-Xylene	25.0	27.2		ug/L		109	74 - 119	0	20
o-Xylene	25.0	27.5		ug/L		110	77 - 118	0	20
2,2-Dichloropropane	25.0	27.0		ug/L		108	74 _ 156	4	20

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 104 67 - 130 102 72 - 130 1,2-Dichloroethane-d4 (Surr) 70 - 130 Toluene-d8 (Surr) 104

Lab Sample ID: MB 720-257144/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 257144 MB MB

	(1)	14117							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			12/18/18 10:21	1
Acetone	ND		50		ug/L			12/18/18 10:21	1
Benzene	ND		0.50		ug/L			12/18/18 10:21	1
Dichlorobromomethane	ND		0.50		ug/ L			12/18/18 10:21	1
Bromobenzene	ND		1.0		ug/L			12/18/18 10:21	1
Chlorobromomethane	ND		1.0		ug/L			12/18/18 10:21	1
Bromoform	ND		1.0		ug/L			12/18/18 10:21	1
Bromomethane	ND		1.0		ug/L			12/18/18 10:21	1
2-Butanone (MEK)	ND		50		ug/ L			12/18/18 10:21	1
n-Butylbenzene	ND		1.0		ug/L			12/18/18 10:21	1

TestAmerica Pleasanton

Page 24 of 41

12/21/2018

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-257144/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 257144 мв мв RL MDL Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed 12/18/18 10:21 sec-Butylbenzene ND 1.0 ug/L ND tert-Butylbenzene 1.0 ug/L 12/18/18 10:21 ug/L Carbon disulfide ND 5.0 12/18/18 10:21 Carbon tetrachloride ND 0.50 ug/L 12/18/18 10:21 Chlorobenzene ND 0.50 ug/L 12/18/18 10:21 ND Chloroethane 1.0 ug/L 12/18/18 10:21 ND Chloroform 1.0 ug/L 12/18/18 10:21 ug/L Chloromethane ND 1.0 12/18/18 10:21 2-Chlorotoluene ND 0.50 ug/L 12/18/18 10:21 4-Chlorotoluene ND 0.50 ug/L 12/18/18 10:21 ND 0.50 ug/L 12/18/18 10:21 Chlorodibromomethane ND 0.50 ug/L 12/18/18 10:21 1,2-Dichlorobenzene ug/L ND 0.50 12/18/18 10:21 1.3-Dichlorobenzene 1,4-Dichlorobenzene ND 0.50 ug/L 12/18/18 10:21 1,3-Dichloropropane ND 1.0 ug/L 12/18/18 10:21 ND 0.50 1.1-Dichloropropene ug/L 12/18/18 10:21 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 12/18/18 10:21 ug/L Ethylene Dibromide ND 0.50 12/18/18 10:21 Dibromomethane ND 0.50 ug/L 12/18/18 10:21 Dichlorodifluoromethane ND 0.50 ug/L 12/18/18 10:21 ND 12/18/18 10:21 1.1-Dichloroethane 0.50 ug/L 1,2-Dichloroethane ND 0.50 ug/L 12/18/18 10:21 ug/L 1,1-Dichloroethene ND 0.50 12/18/18 10:21 cis-1,2-Dichloroethene ND 0.50 ug/L 12/18/18 10:21 trans-1,2-Dichloroethene ND 0.50 ug/L 12/18/18 10:21 1,2-Dichloropropane ND 0.50 ug/L 12/18/18 10:21 cis-1,3-Dichloropropene ND 0.50 ug/L 12/18/18 10:21 ug/L trans-1,3-Dichloropropene ND 0.50 12/18/18 10:21 Ethylbenzene ND 0.50 ug/L 12/18/18 10:21 Hexachlorobutadiene ND 1.0 ug/L 12/18/18 10:21 2-Hexanone ND 50 ug/L 12/18/18 10:21 Isopropylbenzene ND 0.50 ug/L 12/18/18 10:21 4-Isopropyltoluene ND 1.0 ug/L 12/18/18 10:21 Methylene Chloride ND 5.0 ug/L 12/18/18 10:21 4-Methyl-2-pentanone (MIBK) ND 50 12/18/18 10:21 ug/L ND 1.0 ug/L Naphthalene 12/18/18 10:21 N-Propylbenzene ND 1.0 ug/L 12/18/18 10:21 Styrene ND 0.50 ug/L 12/18/18 10:21 1,1,1,2-Tetrachloroethane ND 0.50 ug/L 12/18/18 10:21 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 12/18/18 10:21 ND 0.50 ug/L Tetrachloroethene 12/18/18 10:21 Toluene ND 0.50 ug/L 12/18/18 10:21 1,2,3-Trichlorobenzene ND 1.0 ug/L 12/18/18 10:21 ND 1.0 ug/L 12/18/18 10:21 1.2.4-Trichlorobenzene 1,1,1-Trichloroethane ND 0.50 ug/L 12/18/18 10:21 1,1,2-Trichloroethane ND 0.50 ug/L 12/18/18 10:21 Trichloroethene ND 0.50 ug/L 12/18/18 10:21 ND Trichlorofluoromethane 1.0 ug/L 12/18/18 10:21

TestAmerica Pleasanton

8

12/18/18 10:21

12/18/18 10:21

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

107

101

Lab Sample ID: MB 720-257144/4 Client S							ample ID: Method Blank			
Matrix: Water								Prep Type: T	otal/NA	
Analysis Batch: 257144										
	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,2,3-Trichloropropane	ND		1.0		ug/L			12/18/18 10:21	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			12/18/18 10:21	1	
1,2,4-Trimethylbenzene	ND		0.50		ug/ L			12/18/18 10:21	1	
1,3,5-Trimethylbenzene	ND		0.50		ug/L			12/18/18 10:21	1	
Vinyl acetate	ND		10		ug/L			12/18/18 10:21	1	
Vinyl chloride	ND		0.50		ug/L			12/18/18 10:21	1	
Xylenes, Total	ND		0.50		ug/L			12/18/18 10:21	1	
2,2-Dichloropropane	ND		0.50		ug/L			12/18/18 10:21	1	
	MB	MB								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	95		67 - 130			_		12/18/18 10:21		

Lab Sample ID: LCS 720-257144/5 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

72 - 130

70 - 130

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Analysis Batch: 257144							
	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	24.9		ug/L		100	70 - 130
Acetone	125	128		ug/L		102	61 - 147
Benzene	25.0	25.4		ug/L		101	79 ₋ 119
Dichlorobromomethane	25.0	26.0		ug/L		104	81 - 130
Bromobenzene	25.0	25.2		ug/L		101	77 ₋ 117
Chlorobromomethane	25.0	25.8		ug/L		103	81 - 122
Bromoform	25.0	25.4		ug/L		102	75 ₋ 127
Bromomethane	25.0	22.7		ug/L		91	70 _ 132
2-Butanone (MEK)	125	118		ug/L		94	66 - 133
n-Butylbenzene	25.0	29.3		ug/L		117	78 ₋ 119
sec-Butylbenzene	25.0	28.8		ug/L		115	78 ₋ 118
tert-Butylbenzene	25.0	27.7		ug/L		111	78 ₋ 118
Carbon disulfide	25.0	26.1		ug/L		104	64 _ 127
Carbon tetrachloride	25.0	25.9		ug/L		104	72 - 142
Chlorobenzene	25.0	26.0		ug/L		104	76 ₋ 116
Chloroethane	25.0	25.1		ug/L		101	70 _ 131
Chloroform	25.0	25.9		ug/L		104	82 _ 119
Chloromethane	25.0	24.1		ug/L		97	49 - 134
2-Chlorotoluene	25.0	27.0		ug/L		108	75 _ 115
4-Chlorotoluene	25.0	27.2		ug/L		109	73 ₋ 119
Chlorodibromomethane	25.0	26.1		ug/L		104	77 _ 133
1,2-Dichlorobenzene	25.0	25.3		ug/L		101	77 ₋ 117
1,3-Dichlorobenzene	25.0	25.8		ug/L		103	76 _ 116
1,4-Dichlorobenzene	25.0	25.9		ug/L		104	76 ₋ 116
1,3-Dichloropropane	25.0	25.6		ug/L		102	77 ₋ 117
1,1-Dichloropropene	25.0	26.8		ug/L		107	83 _ 130
1,2-Dibromo-3-Chloropropane	25.0	25.2		ug/L		101	74 ₋ 126
Ethylene Dibromide	25.0	26.4		ug/L		106	80 - 121
Dibromomethane	25.0	25.6		ug/L		102	79 ₋ 117

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-257144/5 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 257144

Analysis Batch: 25/144	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Dichlorodifluoromethane	25.0	22.8	ug/L	91	21 - 150
1,1-Dichloroethane	25.0	25.9	ug/L	104	77 - 119
1,2-Dichloroethane	25.0	25.4	ug/L	102	73 - 122
1,1-Dichloroethene	25.0	25.0	ug/L	100	69 - 119
cis-1,2-Dichloroethene	25.0	26.2	ug/L	105	77 - 117
trans-1,2-Dichloroethene	25.0	25.6	ug/L	102	79 - 117
1,2-Dichloropropane	25.0	26.2	ug/L	105	79 - 119
cis-1,3-Dichloropropene	25.0	26.8	ug/L	107	82 _ 119
trans-1,3-Dichloropropene	25.0	27.0	ug/L	108	76 _ 122
Ethylbenzene	25.0	27.8	ug/L	111	77 - 117
Hexachlorobutadiene	25.0	24.9	ug/L	100	78 ₋ 140
2-Hexanone	125	128	ug/L	103	63 _ 140
Isopropylbenzene	25.0	29.2	ug/L	117	77 _ 130
4-Isopropyltoluene	25.0	28.5	ug/L	114	80 _ 120
Methylene Chloride	25.0	25.9	ug/L	104	75 - 117
4-Methyl-2-pentanone (MIBK)	125	129	ug/L	103	66 - 140
Naphthalene	25.0	25.8	ug/L	103	81 _ 121
N-Propylbenzene	25.0	29.0	ug/L	116	77 - 117
Styrene	25.0	28.6	ug/L	114	76 - 116
1,1,1,2-Tetrachloroethane	25.0	26.3	ug/L	105	81 - 121
1,1,2,2-Tetrachloroethane	25.0	24.2	ug/L	97	70 - 115
Tetrachloroethene	25.0	26.3	ug/L	105	81 - 130
Toluene	25.0	24.4	ug/L	98	75 ₋ 120
1,2,3-Trichlorobenzene	25.0	25.1	ug/L	100	87 _ 123
1,2,4-Trichlorobenzene	25.0	26.2	ug/L	105	78 ₋ 120
1,1,1-Trichloroethane	25.0	26.5	ug/L	106	74 - 130
1,1,2-Trichloroethane	25.0	25.6	ug/L	102	80 - 117
Trichloroethene	25.0	26.7	ug/L	107	80 - 123
Trichlorofluoromethane	25.0	26.3	ug/L	105	75 _ 141
1,2,3-Trichloropropane	25.0	25.0	ug/L	100	77 _ 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.2	ug/L	105	70 - 133
ne					
1,2,4-Trimethylbenzene	25.0	28.7	ug/L	115	75 _ 115
1,3,5-Trimethylbenzene	25.0	28.5	ug/L	114	77 _ 117
Vinyl acetate	25.0	26.2	ug/L	105	50 _ 126
Vinyl chloride	25.0	23.8	ug/L	95	58 _ 138
m-Xylene & p-Xylene	25.0	27.3	ug/L	109	74 - 119
o-Xylene	25.0	28.2	ug/L	113	77 - 118
2,2-Dichloropropane	25.0	28.1	ug/L	112	74 ₋ 156

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		72 - 130
Toluene-d8 (Surr)	103		70 - 130

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-257144/6 Client Sample ID: Lab Control Sample Dup

	Spike	LCSD	LCSD			%Rec.		RP
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Lim
Methyl tert-butyl ether	25.0	25.0	ug/L		100	70 - 130	1	2
Acetone	125	123	ug/L		99	61 - 147	4	3
Benzene	25.0	25.4	ug/L		102	79 - 119	0	2
Dichlorobromomethane	25.0	26.1	ug/L		104	81 _ 130	0	2
Bromobenzene	25.0	25.2	ug/L		101	77 _ 117	0	2
Chlorobromomethane	25.0	26.0	ug/L		104	81 _ 122	1	2
Bromoform	25.0	25.0	ug/L		100	75 ₋ 127	1	2
Bromomethane	25.0	23.5	ug/L		94	70 - 132	3	2
2-Butanone (MEK)	125	123	ug/L		98	66 - 133	4	2
n-Butylbenzene	25.0	29.4	ug/L		118	78 - 119	0	2
sec-Butylbenzene	25.0	29.2	ug/L		117	78 ₋ 118	1	2
tert-Butylbenzene	25.0	28.2	ug/L		113	78 ₋ 118	2	2
Carbon disulfide	25.0	25.9	ug/L		104	64 - 127	1	2
Carbon tetrachloride	25.0	26.0	ug/L		104	72 - 142	1	2
Chlorobenzene	25.0	26.1	ug/L		105	76 - 116	0	2
Chloroethane	25.0	25.2	ug/L		101	70 - 131	0	
Chloroform	25.0	26.0	ug/L		104	82 - 119	0	2
Chloromethane	25.0	23.7	ug/L		95	49 - 134	2	2
2-Chlorotoluene	25.0	27.2	ug/L		109	75 ₋ 115	1	2
4-Chlorotoluene	25.0	27.3	ug/L		109	73 ₋ 119	1	2
Chlorodibromomethane	25.0	26.0	ug/L		104	77 _ 133	0	2
1,2-Dichlorobenzene	25.0	25.5	ug/L		102	77 - 117	1	
1,3-Dichlorobenzene	25.0	25.9	ug/L		104	76 - 116	0	:
1,4-Dichlorobenzene	25.0	25.9	ug/L		104	76 - 116	0	2
1,3-Dichloropropane	25.0	25.5	ug/L		102	77 - 117	0	
I,1-Dichloropropene	25.0	27.1	ug/L		108	83 _ 130	1	
1,2-Dibromo-3-Chloropropane	25.0	25.0	ug/L		100	74 - 126	1	
Ethylene Dibromide	25.0	26.0	ug/L		104	80 - 121	2	
Dibromomethane	25.0	25.3	ug/L		101	79 - 117	1	
Dichlorodifluoromethane	25.0	22.6	ug/L		90	21 - 150	1	:
1,1-Dichloroethane	25.0	25.8	ug/L		103	77 - 119	0	2
I,2-Dichloroethane	25.0	25.4	ug/L		102	73 _ 122	0	
1,1-Dichloroethene	25.0	25.0	ug/L		100	69_119	0	2
cis-1,2-Dichloroethene	25.0	26.2	ug/L		105	77 ₋ 117	0	:
rans-1,2-Dichloroethene	25.0	26.0	ug/L		103	77 - 117 79 ₋ 117	2	:
	25.0	25.8	=		104	79 - 117 79 - 119	1	:
1,2-Dichloropropane	25.0		ug/L			82 - 119	0	
cis-1,3-Dichloropropene		26.7	ug/L		107			:
rans-1,3-Dichloropropene	25.0	26.5	ug/L		106	76 ₋ 122	2	:
Ethylbenzene	25.0	27.6	ug/L		110	77 - 117	1	
Hexachlorobutadiene	25.0	24.9	ug/L		99	78 - 140	0	:
2-Hexanone	125	126	ug/L		101	63 - 140	2	:
sopropylbenzene	25.0	29.4	ug/L		118	77 - 130	1	2
4-Isopropyltoluene	25.0	28.6	ug/L		115	80 - 120	0	:
Methylene Chloride	25.0	25.9	ug/L		103	75 - 117	0	
4-Methyl-2-pentanone (MIBK)	125	126	ug/L		101	66 - 140	2	
Naphthalene	25.0	25.4	ug/L		102	81 _ 121	2	2
N-Propylbenzene	25.0	29.1	ug/L		116	77 _ 117	0	2

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-257144/6 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 257144

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
25.0	26.4		ug/L		105	81 - 121	0	20
25.0	24.7		ug/L		99	70 _ 115	2	20
25.0	26.1		ug/L		104	81 - 130	1	20
25.0	24.3		ug/L		97	75 - 120	1	20
25.0	24.7		ug/L		99	87 - 123	2	20
25.0	25.4		ug/L		102	78 - 120	3	20
25.0	26.3		ug/L		105	74 _ 130	1	20
25.0	25.9		ug/L		104	80 _ 117	1	20
25.0	25.9		ug/L		104	80 _ 123	3	20
25.0	26.9		ug/L		108	75 - 141	2	20
25.0	24.8		ug/L		99	77 - 120	1	20
25.0	26.0		ug/L		104	70 - 133	1	20
25.0	29.3	*	ug/L		117	75 ₋ 115	2	20
25.0	28.8		ug/L		115	77 - 117	1	20
25.0	26.4		ug/L		105	50 _ 126	1	20
25.0	22.6		ug/L		90	58 - 138	5	20
25.0	27.4		ug/L		110	74 - 119	0	20
25.0	27.7		ug/L		111	77 _ 118	2	20
25.0	27.1		ug/L		108	74 ₋ 156	4	20
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 26.4 25.0 24.7 25.0 26.1 25.0 24.3 25.0 25.4 25.0 26.3 25.0 25.9 25.0 26.9 25.0 26.9 25.0 26.0 25.0 28.8 25.0 26.4 25.0 26.4 25.0 22.6 25.0 27.4 25.0 27.7	Added Result Qualifier 25.0 26.4 25.0 24.7 25.0 24.3 25.0 24.7 25.0 25.4 25.0 26.3 25.0 25.9 25.0 25.9 25.0 26.9 25.0 24.8 25.0 26.0 25.0 28.8 25.0 26.4 25.0 22.6 25.0 27.4 25.0 27.7	Added Result Qualifier Unit 25.0 26.4 ug/L 25.0 24.7 ug/L 25.0 26.1 ug/L 25.0 24.3 ug/L 25.0 24.7 ug/L 25.0 25.4 ug/L 25.0 26.3 ug/L 25.0 25.9 ug/L 25.0 25.9 ug/L 25.0 26.9 ug/L 25.0 24.8 ug/L 25.0 26.0 ug/L 25.0 28.8 ug/L 25.0 26.4 ug/L 25.0 22.6 ug/L 25.0 27.4 ug/L 25.0 27.4 ug/L 25.0 27.7 ug/L	Added Result Qualifier Unit D 25.0 26.4 ug/L ug/L 25.0 24.7 ug/L ug/L 25.0 24.3 ug/L ug/L 25.0 24.7 ug/L ug/L 25.0 25.4 ug/L ug/L 25.0 26.3 ug/L ug/L 25.0 25.9 ug/L ug/L 25.0 26.9 ug/L ug/L 25.0 24.8 ug/L ug/L 25.0 26.0 ug/L ug/L 25.0 28.8 ug/L ug/L 25.0 26.4 ug/L ug/L 25.0 27.4 ug/L ug/L 25.0 27.4 ug/L ug/L	Added Result Qualifier Unit D %Rec 25.0 26.4 ug/L 105 25.0 24.7 ug/L 99 25.0 26.1 ug/L 104 25.0 24.3 ug/L 97 25.0 24.7 ug/L 99 25.0 25.4 ug/L 102 25.0 26.3 ug/L 105 25.0 25.9 ug/L 104 25.0 25.9 ug/L 104 25.0 26.9 ug/L 108 25.0 26.9 ug/L 108 25.0 26.0 ug/L 104 25.0 26.0 ug/L 104 25.0 28.8 ug/L 115 25.0 26.4 ug/L 105 25.0 26.4 ug/L 105 25.0 27.4 ug/L 105 25.0 27.4 ug/L 11	Added Result Qualifier Unit D %Rec Limits 25.0 26.4 ug/L 105 81 - 121 25.0 24.7 ug/L 99 70 - 115 25.0 26.1 ug/L 104 81 - 130 25.0 24.3 ug/L 97 75 - 120 25.0 24.7 ug/L 99 87 - 123 25.0 25.4 ug/L 102 78 - 120 25.0 25.4 ug/L 105 74 - 130 25.0 26.3 ug/L 105 74 - 130 25.0 25.9 ug/L 104 80 - 117 25.0 25.9 ug/L 104 80 - 117 25.0 26.9 ug/L 104 80 - 117 25.0 26.9 ug/L 108 75 - 141 25.0 24.8 ug/L 99 77 - 120 25.0 29.3 ug/L 117 75 - 115 <td< td=""><td>Added Result Qualifier Unit D %Rec Limits RPD 25.0 26.4 ug/L 105 81 - 121 0 25.0 24.7 ug/L 99 70 - 115 2 25.0 26.1 ug/L 104 81 - 130 1 25.0 24.3 ug/L 97 75 - 120 1 25.0 24.7 ug/L 99 87 - 123 2 25.0 25.4 ug/L 102 78 - 120 3 25.0 25.4 ug/L 105 74 - 130 1 25.0 26.3 ug/L 104 80 - 117 1 25.0 25.9 ug/L 104 80 - 117 1 25.0 25.9 ug/L 104 80 - 117 1 25.0 26.9 ug/L 108 75 - 141 2 25.0 24.8 ug/L 99 77 - 1120 1 25.0</td></td<>	Added Result Qualifier Unit D %Rec Limits RPD 25.0 26.4 ug/L 105 81 - 121 0 25.0 24.7 ug/L 99 70 - 115 2 25.0 26.1 ug/L 104 81 - 130 1 25.0 24.3 ug/L 97 75 - 120 1 25.0 24.7 ug/L 99 87 - 123 2 25.0 25.4 ug/L 102 78 - 120 3 25.0 25.4 ug/L 105 74 - 130 1 25.0 26.3 ug/L 104 80 - 117 1 25.0 25.9 ug/L 104 80 - 117 1 25.0 25.9 ug/L 104 80 - 117 1 25.0 26.9 ug/L 108 75 - 141 2 25.0 24.8 ug/L 99 77 - 1120 1 25.0

LCSD LCSD Surrogate %Recovery Qualifier Limits 67 _ 130 4-Bromofluorobenzene 102 100 1,2-Dichloroethane-d4 (Surr) 72 - 130 Toluene-d8 (Surr) 103 70 _ 130

Lab Sample ID: MB 720-257216/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 257216

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			12/19/18 10:07	1
Acetone	ND		50		ug/L			12/19/18 10:07	1
Benzene	ND		0.50		ug/L			12/19/18 10:07	1
Dichlorobromomethane	ND		0.50		ug/L			12/19/18 10:07	1
Bromobenzene	ND		1.0		ug/L			12/19/18 10:07	1
Chlorobromomethane	ND		1.0		ug/L			12/19/18 10:07	1
Bromoform	ND		1.0		ug/L			12/19/18 10:07	1
Bromomethane	ND		1.0		ug/L			12/19/18 10:07	1
2-Butanone (MEK)	ND		50		ug/L			12/19/18 10:07	1
n-Butylbenzene	ND		1.0		ug/L			12/19/18 10:07	1
sec-Butylbenzene	ND		1.0		ug/L			12/19/18 10:07	1
tert-Butylbenzene	ND		1.0		ug/L			12/19/18 10:07	1
Carbon disulfide	ND		5.0		ug/L			12/19/18 10:07	1
Carbon tetrachloride	ND		0.50		ug/L			12/19/18 10:07	1
Chlorobenzene	ND		0.50		ug/L			12/19/18 10:07	1
Chloroethane	ND		1.0		ug/L			12/19/18 10:07	1
Chloroform	ND		1.0		ug/L			12/19/18 10:07	1

TestAmerica Pleasanton

12/21/2018

TestAmerica Job ID: 720-90321-1

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-257216/4 Client Sample ID: Method Blank

Matrix: Water						Prep Type: Total/N
Analysis Batch: 257216						
	MB	мв				
Analyte	Result	Qualifier	RL	MDL Unit	D Prepare	d Analyzed Dil F
Chloromethane	ND		1.0	ug/L		12/19/18 10:07
2-Chlorotoluene	ND		0.50	ug/L		12/19/18 10:07
4-Chlorotoluene	ND		0.50	ug/ L		12/19/18 10:07
Chlorodibromomethane	ND		0.50	ug/L		12/19/18 10:07
1,2-Dichlorobenzene	ND		0.50	ug/L		12/19/18 10:07
1,3-Dichlorobenzene	ND		0.50	ug/L		12/19/18 10:07
1,4-Dichlorobenzene	ND		0.50	ug/L		12/19/18 10:07
1,3-Dichloropropane	ND		1.0	ug/L		12/19/18 10:07
1,1-Dichloropropene	ND		0.50	ug/L		12/19/18 10:07
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		12/19/18 10:07
Ethylene Dibromide	ND		0.50	ug/L		12/19/18 10:07
Dibromomethane	ND		0.50	ug/L		12/19/18 10:07
Dichlorodifluoromethane	ND		0.50	ug/L		12/19/18 10:07
1,1-Dichloroethane	ND		0.50	ug/L		12/19/18 10:07
1,2-Dichloroethane	ND		0.50	ug/L		12/19/18 10:07
1,1-Dichloroethene	ND		0.50	ug/L		12/19/18 10:07
cis-1,2-Dichloroethene	ND		0.50	ug/L		12/19/18 10:07
trans-1,2-Dichloroethene	ND		0.50	ug/L		12/19/18 10:07
1,2-Dichloropropane	ND		0.50	ug/L		12/19/18 10:07
cis-1,3-Dichloropropene	ND		0.50	ug/L		12/19/18 10:07
trans-1,3-Dichloropropene	ND		0.50	ug/L		12/19/18 10:07
Ethylbenzene	ND		0.50	ug/L		12/19/18 10:07
Hexachlorobutadiene	ND		1.0	ug/L		12/19/18 10:07
2-Hexanone	ND		50	ug/L		12/19/18 10:07
Isopropylbenzene	ND		0.50	ug/L		12/19/18 10:07
4-Isopropyltoluene	ND		1.0	ug/L		12/19/18 10:07
Methylene Chloride	ND		5.0	ug/L		12/19/18 10:07
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		12/19/18 10:07
Naphthalene	ND		1.0	ug/L		12/19/18 10:07
N-Propylbenzene	ND		1.0	ug/L		12/19/18 10:07
Styrene	ND		0.50	ug/L		12/19/18 10:07
1,1,1,2-Tetrachloroethane	ND		0.50			12/19/18 10:07
1,1,2-Tetrachioroethane	ND		0.50	ug/L		12/19/18 10:07
Tetrachloroethene	ND		0.50	ug/L		12/19/18 10:07
	ND		0.50	ug/L		12/19/18 10:07
Toluene				ug/L		
1,2,3-Trichlorobenzene	ND		1.0	ug/L		12/19/18 10:07
1,2,4-Trichlorobenzene	ND		1.0	ug/L		12/19/18 10:07
1,1,1-Trichloroethane	ND		0.50	ug/L		12/19/18 10:07
1,1,2-Trichloroethane	ND		0.50	ug/L		12/19/18 10:07
Trichloroethene	ND		0.50	ug/L		12/19/18 10:07
Trichlorofluoromethane	ND		1.0	ug/L		12/19/18 10:07
1,2,3-Trichloropropane	ND		1.0	ug/L		12/19/18 10:07
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L		12/19/18 10:07
1,2,4-Trimethylbenzene	ND		0.50	ug/L		12/19/18 10:07
1,3,5-Trimethylbenzene	ND		0.50	ug/L		12/19/18 10:07
Vinyl acetate	ND		10	ug/L		12/19/18 10:07
Vinyl chloride	ND		0.50	ug/L		12/19/18 10:07
Xylenes, Total	ND		0.50	ug/L		12/19/18 10:07

TestAmerica Job ID: 720-90321-1

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-257216/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 257216 мв мв

Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed 2,2-Dichloropropane 0.50 ug/L 12/19/18 10:07 ND

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene 99 67 _ 130 12/19/18 10:07 1,2-Dichloroethane-d4 (Surr) 103 72 _ 130 12/19/18 10:07 Toluene-d8 (Surr) 70 _ 130 12/19/18 10:07 98

Lab Sample ID: LCS 720-257216/5 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

Analysis Batch: 257216								
	Spike	LCS					%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	25.1		ug/L		100	70 _ 130	
Acetone	125	119		ug/L		95	61 ₋ 147	
Benzene	25.0	26.1		ug/L		105	79 _ 119	
Dichlorobromomethane	25.0	28.1		ug/L		112	81 _ 130	
Bromobenzene	25.0	26.0		ug/L		104	77 _ 117	
Chlorobromomethane	25.0	26.4		ug/L		106	81 - 122	
Bromoform	25.0	27.1		ug/L		108	75 ₋ 127	
Bromomethane	25.0	24.8		ug/L		99	70 - 132	
2-Butanone (MEK)	125	120		ug/L		96	66 _ 133	
n-Butylbenzene	25.0	26.6		ug/L		107	78 ₋ 119	
sec-Butylbenzene	25.0	26.2		ug/L		105	78 _ 118	
tert-Butylbenzene	25.0	25.8		ug/L		103	78 _ 118	
Carbon disulfide	25.0	27.7		ug/L		111	64 - 127	
Carbon tetrachloride	25.0	26.7		ug/L		107	72 - 142	
Chlorobenzene	25.0	26.7		ug/L		107	76 - 116	
Chloroethane	25.0	25.1		ug/L		101	70 _ 131	
Chloroform	25.0	27.2		ug/L		109	82_119	
Chloromethane	25.0	23.6		ug/L		94	49 _ 134	
2-Chlorotoluene	25.0	26.4		ug/L		106	75 - 115	
4-Chlorotoluene	25.0	26.9		ug/L		107	73 - 119	
Chlorodibromomethane	25.0	28.5		ug/L		114	77 - 133	
1,2-Dichlorobenzene	25.0	26.9		ug/L		108	77 - 117	
1,3-Dichlorobenzene	25.0	27.0		ug/L		108	76 - 116	
1,4-Dichlorobenzene	25.0	27.1		ug/L		108	76 ₋ 116	
1,3-Dichloropropane	25.0	26.3		ug/L		105	77 - 117	
1,1-Dichloropropene	25.0	26.7		ug/L		107	83 _ 130	
1,2-Dibromo-3-Chloropropane	25.0	23.3		ug/L		93	74 - 126	
Ethylene Dibromide	25.0	26.6		ug/L		106	80 _ 121	
Dibromomethane	25.0	26.3		ug/L		105	79 _ 117	
Dichlorodifluoromethane	25.0	23.9		ug/L		95	21 - 150	
1,1-Dichloroethane	25.0	27.0		ug/L		108	77 _ 119	
1,2-Dichloroethane	25.0	26.6		ug/L		106	73 ₋ 122	
1,1-Dichloroethene	25.0	27.4		ug/L		109	69 _ 119	
cis-1,2-Dichloroethene	25.0	27.2		ug/L		109	77 ₋ 117	
trans-1,2-Dichloroethene	25.0	28.0		ug/L		112	79 ₋ 117	
1,2-Dichloropropane	25.0	27.9		ug/L		112	79 - 119	
·,	20.0			~ S' =				

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-257216/5 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 257216

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,3-Dichloropropene	25.0	28.4		ug/L		113	82 - 119
trans-1,3-Dichloropropene	25.0	26.9		ug/L		107	76 - 122
Ethylbenzene	25.0	26.3		ug/L		105	77 ₋ 117
Hexachlorobutadiene	25.0	25.9		ug/L		104	78 ₋ 140
2-Hexanone	125	123		ug/L		98	63 ₋ 140
Isopropylbenzene	25.0	26.9		ug/L		108	77 ₋ 130
4-Isopropyltoluene	25.0	26.7		ug/L		107	80 _ 120
Methylene Chloride	25.0	24.5		ug/L		98	75 ₋ 117
4-Methyl-2-pentanone (MIBK)	125	122		ug/L		97	66 ₋ 140
Naphthalene	25.0	24.6		ug/L		98	81 ₋ 121
N-Propylbenzene	25.0	26.7		ug/L		107	77 _ 117
Styrene	25.0	25.6		ug/L		102	76 ₋ 116
1,1,1,2-Tetrachloroethane	25.0	27.4		ug/L		110	81 ₋ 121
1,1,2,2-Tetrachloroethane	25.0	26.5		ug/L		106	70 ₋ 115
Tetrachloroethene	25.0	26.6		ug/L		106	81 ₋ 130
Toluene	25.0	25.5		ug/L		102	75 ₋ 120
1,2,3-Trichlorobenzene	25.0	25.8		ug/L		103	87 ₋ 123
1,2,4-Trichlorobenzene	25.0	26.5		ug/L		106	78 ₋ 120
1,1,1-Trichloroethane	25.0	26.7		ug/L		107	74 ₋ 130
1,1,2-Trichloroethane	25.0	27.4		ug/L		110	80 ₋ 117
Trichloroethene	25.0	26.3		ug/L		105	80 - 123
Trichlorofluoromethane	25.0	25.4		ug/L		102	75 ₋ 141
1,2,3-Trichloropropane	25.0	24.7		ug/L		99	77 ₋ 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.2		ug/L		109	70 ₋ 133
ne							
1,2,4-Trimethylbenzene	25.0	26.4		ug/L		106	75 _ 115
1,3,5-Trimethylbenzene	25.0	26.3		ug/L		105	77 ₋ 117
Vinyl acetate	25.0	23.7		ug/L		95	50 _ 126
Vinyl chloride	25.0	26.0		ug/L		104	58 _ 138
m-Xylene & p-Xylene	25.0	26.1		ug/L		104	74 - 119
o-Xylene	25.0	26.9		ug/L		108	77 _ 118
2,2-Dichloropropane	25.0	26.4		ug/L		106	74 ₋ 156

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: LCSD 720-257216/6 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 257216

1 4	Alialysis Datell. 2012 10										
		Spike	LCSD	LCSD				%Rec.		RPD	
١,	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
i	Methyl tert-butyl ether	25.0	25.6		ug/L		102	70 _ 130	2	20	
١,	Acetone	125	115		ug/L		92	61 _ 147	4	30	
	Benzene	25.0	26.2		ug/L		105	79 _ 119	0	20	
	Dichlorobromomethane	25.0	28.3		ug/L		113	81 _ 130	1	20	
	Bromobenzene	25.0	26.6		ug/L		107	77 - 117	2	20	

TestAmerica Job ID: 720-90321-1

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,3-Dichloropropane

1,1-Dichloropropene

Ethylene Dibromide

Dichlorodifluoromethane

Dibromomethane

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1.2-Dichloroethene

1,2-Dichloropropane

Hexachlorobutadiene

4-Isopropyltoluene

Methylene Chloride

4-Methyl-2-pentanone (MIBK)

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,2,3-Trichlorobenzene

Ethylbenzene

2-Hexanone Isopropylbenzene

Naphthalene

Styrene

Toluene

N-Propylbenzene

Tetrachloroethene

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,2-Dibromo-3-Chloropropane

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-257216/6 Matrix: Water			Clie	ient Sample ID: Lab Control Sample Dup Prep Type: Total/NA				
Analysis Batch: 257216								
	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Chlorobromomethane	25.0	26.8	ug/L		107	81 - 122	2	20
Bromoform	25.0	27.5	ug/L		110	75 - 127	1	20
Bromomethane	25.0	24.4	ug/L		98	70 - 132	2	20
2-Butanone (MEK)	125	116	ug/L		92	66 - 133	4	22
n-Butylbenzene	25.0	26.2	ug/L		105	78 - 119	2	20
sec-Butylbenzene	25.0	26.1	ug/L		104	78 ₋ 118	0	20
tert-Butylbenzene	25.0	26.0	ug/L		104	78 ₋ 118	1	20
Carbon disulfide	25.0	27.5	ug/L		110	64 _ 127	1	20
Carbon tetrachloride	25.0	26.4	ug/L		106	72 _ 142	1	20
Chlorobenzene	25.0	26.6	ug/L		106	76 ₋ 116	1	20
Chloroethane	25.0	24.3	ug/L		97	70 _ 131	3	20
Chloroform	25.0	27.5	ug/L		110	82 - 119	1	20
Chloromethane	25.0	23.4	ug/L		94	49 - 134	1	20
2-Chlorotoluene	25.0	26.9	ug/L		108	75 ₋ 115	2	20
4-Chlorotoluene	25.0	27.2	ug/L		109	73 - 119	1	20
Chlorodibromomethane	25.0	29.1	ug/L		116	77 - 133	2	20
1,2-Dichlorobenzene	25.0	27.1	ug/L		108	77 - 117	1	20

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

125

25.0

25.0

25.0

125

25.0

25.0

25.0

25.0

25.0

25.0

25.0

25.0

27.2

27.5

26.8

26.4

23.1

27.3

27.0

23.0

27.0

27.0

27.2

27.3

28.1

27.9

29.0

27.5

26.0

24.6

124

26.7

26.6

25.0

122

24.2

26.8

25.5

27.7

27.4

26.1

25.5

25.1

ug/L

109

110

107

106

92

109

108

92

108

108

109

109

113

112

116

110

104

99

99

107

107

100

98

97

105

102

100

76 - 116

76 - 116

77 - 117

83 - 130

74 - 126

80 _ 121

79 _ 117

21 _ 150

77 - 119

73 - 122

69 - 119

77 - 117

79 - 117

79 - 119

82 - 119

76 - 122

77 - 117

78 - 140

63 _ 140

77 - 130

80 _ 120

75 - 117

66 _ 140

81 _ 121

81 - 130

75 - 120

87 - 123

107 77 - 117 0 20 76 - 116 102 20 81 - 121 111 20 110 70 - 115 3 20

TestAmerica Pleasanton

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

24

20

20

20

21

20

20

20

2

3

0

2

2

0

2

2

0

Client: AECOM Technical Services Inc.

Lab Sample ID: LCSD 720-257216/6

Project/Site: TRW Microwave

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 257216 Spike LCSD LCSD %Rec.

,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	25.0	25.8		ug/L		103	78 - 120	3	20
1,1,1-Trichloroethane	25.0	26.6		ug/L		107	74 - 130	0	20
1,1,2-Trichloroethane	25.0	28.3		ug/L		113	80 - 117	3	20
Trichloroethene	25.0	26.4		ug/L		105	80 - 123	0	20
Trichlorofluoromethane	25.0	25.0		ug/L		100	75 - 141	2	20
1,2,3-Trichloropropane	25.0	25.8		ug/L		103	77 - 120	4	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.5		ug/L		106	70 - 133	3	20
ne									
1,2,4-Trimethylbenzene	25.0	26.3		ug/L		105	75 ₋ 115	0	20
1,3,5-Trimethylbenzene	25.0	26.4		ug/L		106	77 - 117	1	20
Vinyl acetate	25.0	23.9		ug/L		96	50 - 126	1	20
Vinyl chloride	25.0	25.6		ug/L		103	58 _ 138	2	20
m-Xylene & p-Xylene	25.0	25.9		ug/L		103	74 _ 119	1	20
o-Xylene	25.0	26.8		ug/L		107	77 _ 118	1	20
2,2-Dichloropropane	25.0	26.2		ug/L		105	74 - 156	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	102		72 - 130
Toluene-d8 (Surr)	98		70 - 130

QC Association Summary

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

GC/MS VOA

Analysis	Batch:	257057
-----------------	--------	--------

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method Prep Batch
720-90321-4	J6038-EB-121418	Total/NA	Water	8260B
MB 720-257057/4	Method Blank	Total/NA	Water	8260B
LCS 720-257057/5	Lab Control Sample	Total/NA	Water	8260B
LCSD 720-257057/6	Lab Control Sample Dup	Total/NA	Water	8260B

Analysis Batch: 257059

F					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-90321-1	J6038-TRIPBLANK-121418	Total/NA	Water	8260B	
MB 720-257059/4	Method Blank	Total/NA	Water	8260B	
LCS 720-257059/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-257059/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 257144

[
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-90321-2	J6038-T-25BD-121418	Total/NA	Water	8260B	
720-90321-3	J6038-T-25BS-121418	Total/NA	Water	8260B	
MB 720-257144/4	Method Blank	Total/NA	Water	8260B	
LCS 720-257144/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-257144/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 257216

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-90321-4	J6038-EB-121418	Total/NA	Water	8260B	
MB 720-257216/4	Method Blank	Total/NA	Water	8260B	
LCS 720-257216/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-257216/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Lab Chronicle

Client: AECOM Technical Services Inc.

Client Sample ID: J6038-TRIPBLANK-121418

Project/Site: TRW Microwave

Date Collected: 12/14/18 09:00

Date Received: 12/14/18 16:30

TestAmerica Job ID: 720-90321-1

Lab Sample ID: 720-90321-1

Matrix: Water

Batch Dilution Batch

Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 257059 12/17/18 17:20 AJS TAL PLS

Client Sample ID: J6038-T-25BD-121418 Lab Sample ID: 720-90321-2

Date Collected: 12/14/18 09:27 Matrix: Water

Date Received: 12/14/18 16:30

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Lab Analyst 8260B JD1 TAL PLS Total/NA Analysis 10 257144 12/18/18 13:42

Client Sample ID: J6038-T-25BS-121418 Lab Sample ID: 720-90321-3

Date Collected: 12/14/18 10:35 Matrix: Water

Date Received: 12/14/18 16:30

Batch Batch Dilution Batch Prepared Prep Type Туре Method Factor Number or Analyzed Run Analyst 8260B TAL PLS Total/NA Analysis 10 257144 12/18/18 13:14 JD1

Client Sample ID: J6038-EB-121418 Lab Sample ID: 720-90321-4 Date Collected: 12/14/18 10:55 Matrix: Water

Date Received: 12/14/18 16:30

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260B 257216 12/19/18 12:03 A1C TAL PLS Analysis Total/NA Analysis 8260B 1 257057 12/17/18 16:58 AJS TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Accreditation/Certification Summary

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Program		Identification Number	Expiration Date		
California	State Prograr	m	9	2496	01-31-20		
The following analytes	are included in this report, but th	ne laboratory is not o	certified by the governi	ng authority. This list may inc	lude analytes for whi		
	are included in this report, but the	ne laboratory is not o	certified by the governi	ng authority. This list may inc	lude analytes for whi		
The following analytes the agency does not of	·	ne laboratory is not o	certified by the governi	ng authority. This list may inc	lude analytes for whi		

Method Summary

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS
5030B	Purge and Trap	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: AECOM Technical Services Inc.

Project/Site: TRW Microwave

TestAmerica Job ID: 720-90321-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received			
720-90321-1	J6038-TRIPBLANK-121418	Water	12/14/18 09:00	12/14/18 16:30			
720-90321-2	J6038-T-25BD-121418	Water	12/14/18 09:27	12/14/18 16:30			
720-90321-3	J6038-T-25BS-121418	Water	12/14/18 10:35	12/14/18 16:30			
720-90321-4	J6038-EB-121418	Water	12/14/18 10:55	12/14/18 16:30			

7

13

Tost Amorino

1220 Quarry Lane • Pleasanton CA 94566-4756 Phone: (925) 484-1919 • Fax: (925) 600-3002 THE LEADER IN ENVIRONMENTAL TESTING

THESTAMERICA Pleasanton Chain of Custody

Reference #: 78734/D

ð Page_ Date 12 |11 |12

	Number of Containers				1.			ı	ı	1				1	
				Jacobski Spip Jacobski Spip Amerika Jacobski Jacobski Maria Jacobski Jacobski Maria Jacobski Mar		-	W.M.	Time	Date			Time	Date		
	COD EPA 410.4 SM5220D			Technologies Technologies SESSESSION SE		ypody									Rev.11/2014
	D Perchlorate by EPA 314 0			27970705 48900000 270504505 270504505		Chain of Custody	hed by.		92		by:		φ		Rev.
	Anions C(CSO, DVO, DF			TOTAL CONTROL OF THE PROPERTY			3) Relinquished by	Signature	Printed Name	Company	3) Received by	Signature	Printed Name	Company	
	☐ Spec Cond. ☐ Alkalinity			STOCKHOOL STOCKH			<u></u>	Sig	붑	S	3) F	ig.	<u> </u>	Š	
	0406 □ Hq 0046 □ Hq				1 1	,	1~	<i>L</i> ,	9	ı		N.		. ا	2
	Hex Chrom by [] EPA 7196				A COLUMN TO THE		17.15	Time	Date		206	Time 2 - 1 %.	Date	•	25
şį	□ W.E.T (STLC) □ W.E.T (STLC)			A CONTRACTOR OF THE CONTRACTOR		AAA AAAA AAAAA AAAA	1 2	1		Trace Verification	<i>y</i>				
Seque	Metals: ☐ 6020 ☐ 200.8 (ICP-MS)						***					TOVE			
Analysis Request	Metals. © 60108 ©200 7 © Lead © LUFT ©RCRA © Other:		A CALLANDON TO THE OWNER OF THE OWNER OWNER OF THE OWNER				2) Relinquished by	ture 7.2.7.5	Vame	, s	Received by:	Penm 3 4	varne -/ L	,	
Ang	(EPA 6010/7470/7471)						Relin	Signature	Printed Name	Company	Rece	Signature	Frinted Name $\mathcal{A} - \mathcal{A}$	Company	
	Pesticides 🛘 EPA 8081						-	I 15%	.I	10	2 7	.×0	1		
	Oil and Grease D Petroleum (EPA 1664/9071)						5	- File	pate		211.	ime -/4//	e Cale		
	PNA\PAH's by □ 8270C SIM						16	17			E.	12			-
	SemiVolatile Organics GC/MS						$\rfloor \ \rangle$								***************************************
	TEPH EPA 80158 🏻 Silica Gel							V. Wigo		,		3/2	2		
	EPA 82608 ☐ Gas ☐ BTEX ☐ 5 Oxygenales ☐ DCA, EDB□ Elhanol						1) Relinquishe	\$ \$	Printed Name	Jany	1) Received b	Signature	= ~4	Jany	
	HAOCs Py D EPA 8260B	the state of the s						Signature		Company	E 1	Signature		Company	
_	Volatile Organics GC/MS (VOCs)	メメ	メメ							AP	۱				
	COCK Country (2), Opung (4) Me (2) My (2) Lywn Bringer Hone: Time Mal Preserv are Time Mal Preserv	1	は記						A STATE OF THE STA	If yes, please call with payment information ASAP	other. Standar	11 EDF			
	1.00 Also	3 =	3 3				Ge ::			t inform	Other Stan				
	77 24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1				e Re tainers	ace:		aymen	1 Day		! ⊇ ₹		
	Joldcock John & Country & Down Sampled By, Kywn Brinday Phone: Date Time Mal Pr	2 12 14 16 10 100 100 100 100 100 100 100 100 1	XXO 2027				Sample Receipt # of Containers:	Head Space:	Temp:	il with p	2 Day	O Level 4 O EDD	<u>2</u> 5 3		
	DCOC	是是	习言			majori producti della man	Ø ‡ŧ	<u> </u>	۳	ease cs					
_	Helb Megan Signal	\$	93							yes, pt	3 Day	□ Level 3		a .	
-	MO12/2017	South	引音				<u>1</u>	وچ		==	4 Day		3 <u>2</u>	on reversa	
0	20 8 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4	2 6				Project Info. Name/#:	97			5 Day	Routin		onditions	
Report To	Attn: HOLL Y Company: Address: 499 Email: HOLL Y Bill To: NGC Attn: Sample 1	36038 Troplante 12ml 12ml 16 0100	160% 1-2855-121418 2/14/18/1035				Project Name/#:	1059263C		Credit Card	10 Day	Report: □ Routine □ Level 3	<u>8</u> = 0	ms and C.	-
Ŗ.	Attr: Comp. Addree Email: Bill To	13 15	33	Page 4	0 of 41		Proje	<u>·3</u>	PO#:	Cred	- < -	Repo	§ 12/2	See Terms and Conditions on reverse	18

Client: AECOM Technical Services Inc.

Job Number: 720-90321-1

List Source: TestAmerica Pleasanton

Login Number: 90321 List Number: 1 Creator: Arauz, Dennis

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	